Study on the Structural and Optical Properties of CuO Thin Films Mixed with La2O3 Deposited using Pulsed Laser Deposition for Future Optoelectronic and Gas Sensing Devices Applications
DOI:
https://doi.org/10.54153/sjpas.2025.v7i2.1123Keywords:
PLD, Rare earth elements, Copper oxide, La2O3, Optoelectronics, Gas sensorAbstract
The mix of thin metal oxide coatings with rare earth elements demonstrates great potential for improving structural and optical properties in advancing optoelectronic devices and gas sensors. This study investigated the impact of varying weight ratios mixing of lanthanum oxide (La₂O₃) on copper oxide (CuO) thin films' structural, topographic, microstructural, and electronic transition characteristics. The characteristics of films developed via pulsed laser deposition were examined utilizing X-ray diffraction (XRD), energy-dispersive X-ray (EDX) spectroscopy and atomic force microscopy (AFM), field emission scanning electron microscopy (FE-SEM), photoluminescence (PL) and UV-Vis spectroscopy analysis. According to the structural analysis, the polycrystalline copper oxide film crystallized with a dominating peak towards the (111) diffraction peak. The dominant peak intensity decreased as the lanthanum oxide content increased, and the crystal size reduced from 19 to 17.4 nm. The elemental analysis confirmed the presence of O, Cu, and La elements and no other EDX emission peaks corresponding to additional elements or impurities. The as-deposited CuO film had a wide nano-grain distribution, with an average grain size of 100 nm and an average RMS of 3.7 nm. In contrast, the La2O3 mixed-CuO samples showed a decrease in average grain size and increased RMS to 4.9 nm for the largest La2O3 mixing ratio. The optical analysis verified a reduction in the CuO absorbance spectrum and a blue shift in the absorption edge with an increasing mixing ratio of La2O3, raising the optical energy gap from 2.25 eV to 2.85 eV. The results indicate that the mixing of La₂O₃ substantially modifies the structural and optical characteristics of CuO thin films, rendering the developed films suitable candidates for gas sensing and optoelectronic applications
References
1. Rzaij, J. M., & Habubi, N. F. (2022). Enhancing the CO2 sensor response of nickel oxide-doped tin dioxide thin films synthesized by SILAR method. Journal of Materials Science: Materials in Electronics, 33(15), 11851–11863. https://doi.org/10.1007/s10854-022-08148-2
2. Salih, E. Y., Ali Bashir, M. B., Rajpar, A. H., & Badruddin, I. A. (2022). Fabrication and characterization of porous Si/CuO film for visible light MSM photodetector: The effect of post-processing temperature. Ceramics International, 48(7), 9965–9972. https://doi.org/10.1016/j.ceramint.2021.12.203
3. Alfaro Cruz, M. R., Sanchez-Martinez, D., & Torres-Martínez, L. M. (2020). CuO thin films deposited by DC sputtering and their photocatalytic performance under simulated sunlight. Materials Research Bulletin, 122, 110678. https://doi.org/10.1016/j.materresbull.2019.110678
4. Al-Kuhaili, M. F. (2008). Characterization of copper oxide thin films deposited by the thermal evaporation of cuprous oxide (Cu2O). Vacuum, 82(6), 623–629. https://doi.org/10.1016/j.vacuum.2007.10.004
5. Mahana, D., Mauraya, A. K., Singh, P., & Muthusamy, S. K. (2023). Evolution of CuO thin films through thermal oxidation of Cu films prepared by physical vapour deposition techniques. Solid State Communications, 366–367, 115152. https://doi.org/10.1016/j.ssc.2023.115152
6. Zhong, Y., Dou, Z., Wang, R.-F., Lv, Y.-F., Han, S., Yan, H., … Xue, Q.-K. (2021). Real-space characterization of tetragonal CuO epitaxial films. Applied Physics Letters, 119(17), 172602. https://doi.org/10.1063/5.0069356
7. Welegergs, G. G., Mehabaw, Z. ., Gebretinsae, H. G., Tsegay, M. G., Kotsedi, L., Khumalo, Z., … Maaza, M. (2023). Electrodeposition of nanostructured copper oxide (CuO) coatings as spectrally solar selective absorber: Structural, optical and electrical properties. Infrared Physics & Technology, 133, 104820. https://doi.org/10.1016/j.infrared.2023.104820
8. Panda, R., Patel, M., Thomas, J., & Joshi, H. C. (2022). Pulsed laser deposited Cu2O/CuO films as efficient photocatalyst. Thin Solid Films, 744, 139080. https://doi.org/10.1016/j.tsf.2022.139080
9. Hassen, M. J., Seno, N. I., Alalousi, M. A., & Rzaij, J. M. (2024). Effect of copper content on the structural properties of the CuxCo1-XFe2O4 Nanostructured Spinel Ferrite Based on Williamson-Hall Analysis Maram. Samarra Journal of Pure and Applied Science www.sjpas.com, 4(6), 208–218. https://doi.org/10.54153/sjpas.2024.v6i4.950 Article
10. Singh, R. S., Patidar, R. D., Singh, A. K., Deshmukh, K., Thakur, K., & Gautam, A. (2023). Simple Thermal Annealing‐Assisted Direct Synthesis and Optical Property Study of CuO Nanoparticles Incorporated Polyvinyl Alcohol Films. physica status solidi (a), 220(17), 2300328. https://doi.org/10.1002/pssa.202300328
11. Sayyed, S. G., Shaikh, A. V., Shinde, U. P., Hiremath, P., & Naik, N. (2023). Copper oxide-based high-performance symmetric flexible supercapacitor: potentiodynamic deposition. Journal of Materials Science: Materials in Electronics, 34(17), 1361. https://doi.org/10.1007/s10854-023-10738-7
12. Yang, Y., Gao, L., Han, Y., Gao, Q., Lan, R., & Shen, Y. (2024). Passively Q-switched Tm:YAP laser based on WSe2/CuO heterojunction saturable absorber. Applied Physics B, 130(10), 171. https://doi.org/10.1007/s00340-024-08311-z
13. Mohammed Enad, A., & Rzaij, J. M. (2024). Synthesis of CuO Thin Film Incorporated with Nanostructured Nd 2 O 3 Deposited by Pulsed Laser Deposition for Ammonia Sensing Applications. Nano. https://doi.org/10.1142/S1793292024501133
14. Rzaij, J. M. (2023). A novel room-temperature nitrogen dioxide gas sensor based on silver-doped cerium oxide thin film. Sensors and Actuators A: Physical, 363, 114748. https://doi.org/10.1016/j.sna.2023.114748
15. Chen, X., Ren, F., Gu, S., & Ye, J. (2019). Review of gallium-oxide-based solar-blind ultraviolet photodetectors. Photonics Research, 7(4), 381. https://doi.org/10.1364/PRJ.7.000381
16. Enad, A. M., & Rzaij, J. M. (2024). Investigate the structural , morphological , and topographical characteristics of CuO thin films utilizing a pulsed laser deposition method. Journal of Theoretical and Applied Physics, 18(AICIS’23), 1–8. https://doi.org/10.57647/j.jtap.2024.si-AICIS23.03
17. Klimov, V. I. (2007). Spectral and Dynamical Properties of Multiexcitons in Semiconductor Nanocrystals. Annual Review of Physical Chemistry, 58(1), 635–673. https://doi.org/10.1146/annurev.physchem.58.032806.104537
18. Tawfeeq, H. A., & Rzaij, J. M. (2024). The effect of Nb2O5 and pdo nanostructures coating on the structural and morphological properties of CdO thin films. In 4TH INTERNATIONAL CONFERENCE ON PURE SCIENCES: ICPS2023 (p. 050011). Baghdad, Iraq. https://doi.org/10.1063/5.0196260
19. Tejani, J., Shah, R., Vaghela, H., Vajapara, S., & Pathan, A. (2020). Controlled Synthesis and Characterization of Lanthanum Nanorods. International Journal of Thin Films Science and Technology, 9(2), 119–125. https://doi.org/10.18576/ijtfst/090205
20. Shawki, O. S., & Rzaij, J. M. (2023). Effect of Fe2O3 upper layer on structural, morphological, and photoluminescence characteristics of TiO2 thin film prepared by chemical spray pyrolysis. In 1st Diyala International Conference for Pure and Applied Science (ICPAS2021) (p. 020009). Iraq: AIP Conference Proceedings. https://doi.org/10.1063/5.0112172
21. Ramadhan, A. A., Hameed, M. M., Salman, M. O., & Nasir, E. M. (2024). Enhanced Gas Sensing Performance of Plasma-Treated Tin-Zinc–Oxide Thin Films Deposited by Spray Pyrolysis. Iraqi Journal of Applied Physics, 20(3), 485–492.
22. Dathan, M. J., Hassan, B. F., Abduljabbarb, Q. A., & Rzaij, J. M. (2023). Nickel oxide doping impact on the NO2 sensing properties of nanostructured zinc oxide deposited by spray pyrolysis. Digest Journal of Nanomaterials and Biostructures, 18(4), 1159–1167. https://doi.org/10.15251/DJNB.2023.184.1159
23. Farhad, S. F. U., Webster, R. F., & Cherns, D. (2018). Electron microscopy and diffraction studies of pulsed laser deposited cuprous oxide thin films grown at low substrate temperatures. Materialia, 3, 230–238. https://doi.org/10.1016/j.mtla.2018.08.032
24. Anitha, M., Anitha, N., Saravanakumar, K., Kulandaisamy, I., & Amalraj, L. (2018). Effect of Zn doping on structural, morphological, optical and electrical properties of nebulized spray-deposited CdO thin films. Applied Physics A: Materials Science and Processing, 124(8), 0. https://doi.org/10.1007/s00339-018-1993-7
25. Gnanasekar, T., Valanarasu, S., Ubaidullah, M., Alam, M., Nafady, A., Mohanraj, P., … Pandit, B. (2022). Fabrication of Er, Tb doped CuO thin films using nebulizer spray pyrolysis technique for photosensing applications. Optical Materials, 123, 111954. https://doi.org/10.1016/j.optmat.2021.111954
26. Abdo, S. K., & Rzaij, J. M. (2021). Copper Molarity Effect on the Optical Properties of Cu2CdSnS4 Quaternary Thin Films. Iraqi Journal of Science, 62(5), 1513–1523. https://doi.org/10.24996/ijs.2021.62.5.15
27. Modhi, M. K., & Rzaij, J. M. (2023). Synthesis and characterization study of CuO thin film and CuO-CeO2 nanostructured composite using chemical spray pyrolysis. In AL-KADHUM 2ND INTERNATIONAL CONFERENCE ON MODERN APPLICATIONS OF INFORMATION AND COMMUNICATION TECHNOLOGY (p. 030066). Baghdad, Iraq: AIP Conference Proceedings. https://doi.org/10.1063/5.0120468
28. Basith, N. M., Vijaya, J. J., Kennedy, L. J., & Bououdina, M. (2014). Structural, morphological, optical, and magnetic properties of Ni-doped CuO nanostructures prepared by a rapid microwave combustion method. Materials Science in Semiconductor Processing, 17, 110–118. https://doi.org/10.1016/j.mssp.2013.09.013
29. Ong, C. H., & Gong, H. (2003). Effects of aluminum on the properties of p-type Cu–Al–O transparent oxide semiconductor prepared by reactive co-sputtering. Thin Solid Films, 445(2), 299–303. https://doi.org/10.1016/S0040-6090(03)01175-1
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright Notice
Authors retain copyright and grant the SJPAS journal right of first publication, with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in Samarra Journal of Pure and Applied Science.
The Samarra Journal of Pure and Applied Science permits and encourages authors to archive Pre-print and Post-print items submitted to the journal on personal websites or institutional repositories per the author's choice while providing bibliographic details that credit their submission, and publication in this journal. This includes the archiving of a submitted version, an accepted version, or a published version without any Risks.