

Samarra Journal of Pure and Applied Science

p ISSN: 2663-7405 www.sjpas.com e ISSN: 2789-6838

The sensitivity of heparin-binding growth factor as a diagnostic marker for atherosclerosis

Sara Emad Abd Alwahed^{1*} and Rafah Razooq Hameed Al-Samarrai²

- 1- Department of Pathological Analysis, College of Applied Science, University of Samarra, Salah al-Din, Iraq
- 2-Department of Applied Chemistry, College of Applied Science, University of Samarra, Iraq

This work is licensed under a Creative Commons Attribution 4.0 International License

https://doi.org/10.54153/sjpas.2024.v6i3(2).941

Article Information

Received: 04/05/2024 Revised: 10/05/2024 Accepted: 13/05/2024 Published: 01/10/2024

Keywords:

Atherosclerosis, calcium, cholesterol, heparinbinding growth factor, triglycerides

Corresponding Author

E-mail:

saraabd218022@gmail.com Mobile: 07734114940

Abstract

The study aimed to evaluate the level of heparin-binding growth factor (HBGF) as a sensitive ,arker for atherosclerosis. study included collecting 90 serum samples (60 samples for patients with atherosclerosis and 30 samples from healthy individuals as a control group) to evaluate the level of HBGF, calcium, and lipid profile in patients with atherosclerosis. The patients samples were collected from the Ibn Al-Bitar Cardiac Surgery Center in Baghdad Governorate for the period from 1/11/2023 to 1/1/2024. The levels of HBGF, calcium, and lipid profile'[total cholesterol (TC), triglycerides (TG), high density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C)}. The results showed a significant increase in the levels of HBGF, TC, TG, LDL-C and calcium, with a significant decrease in HDL-C level in the patient s group as compared to the control. Receiver-operating characteristic curve analysis showed that the AUC for the HBGF is outstanding, with excellent sensitivity, in addition to the excellent accuracy for cholesterol LDL-C and HDL-C in the diagnosis of the disease. From the results, we can conclude that HBGF is a sensitive parameter for diagnosing atherosclerosis with a high sensitivity.

Introduction

Atherosclerosis is a chronic inflammatory arteritis, and it is the main cause of cardiovascular disease (CVD). In atherosclerosis, the arteries gradually narrow and thicken, preventing blood flow to the tissues and organs because the arteries become stiff and inelastic [1]. Lipids and calcium accumulation in atherosclerosis. In addition to multiplying fibrous tissue and smooth muscle cells, phagocytic cells move from the tissue to the blood vessels and arteries. This causes inflammation. However, in some cases, macrophage deposition occurs, and in this case, the process becomes more complex, so these deposits and collections of cells and other materials are known as plaques [2,3]. These plaques impede the passage of blood, and thus, there is a weakness in tissue perfusion due to the narrowing of the arteries [4]. As soon as stress occurs in the vessel wall, it will affect the blood vessels, which will be more susceptible to atherosclerosis [5]. They will lose their ability to maintain balance, so the vessel walls become vulnerable to narrowing, increased permeability leading to fat infiltration, activation of platelets, and oxidative stress, and this contributes to stimulating the immune response, which leads us to inflammation, which plays a vital role in atherosclerosis [6,7]. It was found that endothelial dysfunction plays a vital role in the final stages of atherosclerosis, as it contributes to the plaque's development and the plaque's rupture, which causes devastating consequences [7].

Midkine (MK) is a heparin-binding growth factor (HBGF) act as cytokine [8,9]. HBGF is involved in many biological processes, such as initiating and directing the cellular differentiation of T cells and B cells during inflammatory processes, protecting cells from cell death (as seen in atherosclerosis), and managing oxidative stress [10]. It can also be expressed in many cells, perhaps the most prominent of which are megakaryocytes and cells lining blood vessels [11]. HBGF exerts a procoagulant effect through many changes in the pathophysiological processes involved in the process of atherosclerosis, including the accumulation of fats in macrophages, its effect on blood vessels, its role in insulin resistance, and many other factors contributing to the development of atherosclerosis [12]. It has also been shown that in patients with chronic heart failure, their HBGF levels increased twofold, which is an indication that high levels of HBGF are associated with functional dysfunction [13].

Dyslipidemia is one of the main risk factors for cardiovascular disease [14]. Researchers have found that low-density lipoprotein cholesterol (LDL-C) is a major cause of heart disease because it accumulates cholesterol in the artery walls. This buildup of cholesterol leads to a several of heart problems, including atherosclerosis [15]. Moreover, when LDL-C undergoes an oxidation process by free radicals due to oxidative stress, it affects the development of atherosclerosis [16]. Atherosclerosis represents a sequential event and interaction between high levels of LDL with both immune cells, differentiated mononuclear cells, and non-immune cells, which are smooth muscle cells. This process culminates in the secretion of growth factors and adhesion molecules, leading to foam cell formation and ultimately the development of an atherosclerotic plaque [17]. So, the study aimed to evaluate the level of HBGF as a sensitive marker for atherosclerosis.

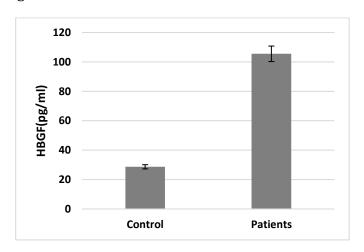
Subject And Methods

<u>Study design</u>: A total of 90 blood samples were collected from male participants aged 35-70. The cohort comprised 60 patients diagnosed with atherosclerosis by a specialist and 30 healthy individuals serving as a control group. Blood samples were obtained from the Ibn Al-Bitar Cardiac Surgery Center in Baghdad Governorate between October 1 and December 1, 2023.

The study included estimating the concentration of HBGF using the sandwich method [enzyme-linked immunosorbent assay (ELISA) kit provided by the Chinese company SUNLONG]. The serum calcium concentration was also estimated using a colorimetric method kit[18] provided by the LiNEAR company/ Spanish. The concentration of the lipid profile(cholesterol, triglycerides-TG, high-density lipoproteins cholesterol-HDL-C) were determined using the enzymatic colorimetric methods kits provided by LiNEAR company / Spanishm while the LDL-C was calculated according to the following equation [19]:

Statistical analysis

The mean \pm standard deviation (SD) was used to express the level of biochemical parameters under study between the two groups (patients and control) using the statistical analysis program SPSS. The difference between the two groups was also used based on the T-test at the probability level P \geq 0.0001, and the receiver operating characteristic curve-ROC curve was calculated. For the parameters (HBGF, Ca, TC, TG, HDL, LDL) for the two groups. The ROC curve [ROC-MedCalc. V.20] was employed to estimate the accuracy, sensitivity, and specificity for parameters under investigation between patients and control at (p \leq 0.01) as statistical significance.


Results and Discussion

The level of HBGF and calcium were estimated in the sera of patients with atherosclerosis group and healthy controls, and the results are shown in Table 1.

Parameters	Mea	P≤	
	Control	Patients	
HBGF(pg/ml)	28.665±4.649	105.493±29.227	0.01
Calcium (mg/dl)	9.401±1.571	10.542±1.117	0.01

Table 1: The levels of HBGF(mean±SD) in patients and the control groups

Table 1 shows that the mean \pm SD of HBGF level in the patient group was (105.493 \pm 29.227) pg/ml, while the control group had (28.665 \pm 4.649) pg/ml. The results of the current study showed that the level of HBGF significantly elevated (P \leq 0.05) in patients group. as compared to the control group, Figure 1.

Figure 1: Mean of serum HBGF level in patients and control groups

The current study found that the level of HBGF is significantly higher in the sera of people who have atherosclerosis. This may be because HBGF plays a key role in supporting the growth and proliferation of the vascular smooth muscle. This migration of the smooth cells to the site of damage in the vessels, promotes plaque formation [20,10]. HBGF also promotes the

accumulation of lipids, which in turn represents a cause of injury, it is therefore closely correlated with the development of atherosclerotic plaques [21,22]. Alkado and Al-Helaly showed that the level of HBGF significantly increased in the sera of patients with myocardial infarction [23]. A study was found that proves HBGF relationship to the formation of new blood vessels from injured blood vessels in patients with cardiovascular disease [24]. Our study is consistent with a study conducted on 107 samples of patients with atherosclerosis, and the results showed that MK levels are high in patients compared to the control group, and that its levels are higher in males than females, so MK is considered a good indicator of atherosclerosis [25]. Another study also showed that high levels of MK were related to risk factors that cause atherosclerosis, such as high blood pressure, and this is due to it being linked to the proliferation of vascular smooth muscles, as well as the generation of blood vessels from blood vessels affected by atherosclerosis [26].

Table 1 shows the serum level (mean \pm SD) of calcium in patients was (10.542 \pm 1.117) mg/dL, while it was (9.401 \pm 1.571) in the control group. The results indicate that the level of calcium was significantly elevated in the patient's sera compared with the control group (Figure 2).

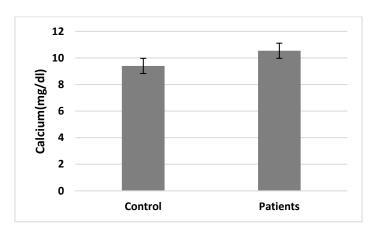
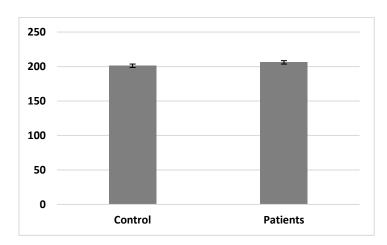


Figure 2: Mean serum calcium level in patients and control groups


Calcium is one of the most important minerals in the body, and it plays an important role in cellular physiological processes for the body such as blood clotting, nerve conduction, muscle contraction, and building bones and teeth [27]. The high level of calcium correlates with insulin resistance, metabolic syndrome, and dyslipidemia [28]. This elevation may be due to the continued use of calcium supplements, which may increase the risk of developing blood and vascular diseases [29]. The results of the present study agree with the results of the study of Park and Lee [30]. The blood calcium is linked to cardiovascular disease and atherosclerosis where calcium accumulation occurs in the atherosclerotic plaque, which is a prominent feature of atherosclerotic plaque. The accumulation usually occurs in the plaque inside the necrotic core and later leads to the emergence of clinical complications such as blood clotting [31].

The levels of lipids profile, including (TC, TG, HDL-C, LDL-C,) were also estimated in the sera of males with atherosclerosis and healthy individuals as a control group, as in **Table 2**.

Table 2: The levels of lipid profile (mean±SD) in patients and the control groups

Parameters	Mean	p≤	
	Control	Patients	
TC(mg/dl)	201.136±6.432	206.072±3.568	0.01
TG(mg/dl)	98.861±6.298	130.509±24.210	0.01
HDL-C(mg/dl)	41.652±4.018	32.714±3.129	0.01
LDL-C(mg/dl)	139.711±8.535	147.256±6.145	0.01

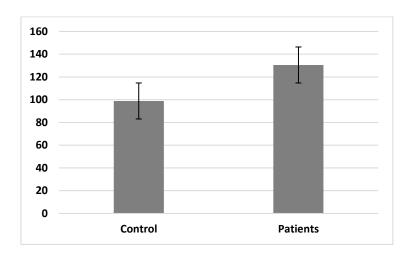

Table 2 showed that the mean \pm SD of cholesterol level was (206.072 \pm 3.568) mg/dL in the patient and (201.136 \pm 6.432) mg/dL in the control groups. The results shown that cholesterol level increased significantly (P \leq 0.01) in the patient group compared to the control group, Figure 3.

Figure 3: Mean of cholesterol level in patients and control groups

Many studies have indicated that abnormal levels of cholesterol that correlated with cardiovascular diseases, in which high level of cholesterol is associated with the risk of CVD, and that these high levels are often accompanied by an increase in the level of LDL-C, which increase motality rate between CVD patients [32]. Numerous studies have shown that high levels of cholesterol increase the risk of developing cardiovascular diseases (CVD), and that these high levels frequently coincide with an increase in the level of LDL-C, which raises the motility rate in CVD patients [33]. Other studies have also clarified its role as a risk factor for coronary heart disease and how it has a strong effect on men compared to women based on its high levels [34], This correlation was confirmed by the study of John, *et al* [35], that was conducted on 500 people with coronary heart disease and measured their lipids levels. It was found that the cholesterol level showed a significant increase, with increase the level of TG, LDL-C, and with low level of HDL-C, that is indicates the role of cholesterol in the occurrence and development of the disease.

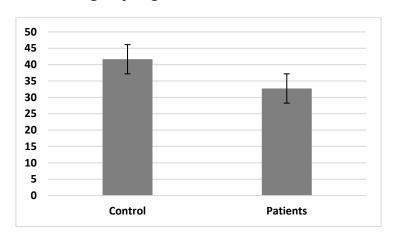

From Table 2 it is clear that the mean \pm SD of the TG level was (130.509 \pm 24.210) mg/dL in the patient group, and (98.861 \pm 6.298) mg/dL in the control group. The results indicate that the triglyceride level showed a significant increase (P \leq 0.01) in patients group as compared to the control group, as shown in Figure 4.

Figure 4: Mean level of TG in the sera of the patients and control groups.

The correlation between high TG level and atherosclerosis has been demonstrated in many studies, in which epidemiological evidence supports this correlation and most data indicate their role in causing CVD[36]. Hypertriglyceridemia is also considered a major contributor to the risk of developing Atherosclerotic Cardiovascular Disease (ASCVD) [37].

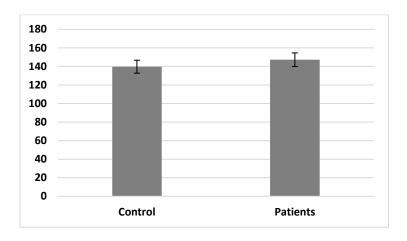

Table 2 showed that the mean \pm SD of high-density lipoprotein cholesterol level was (32.714 \pm 3.129) mg/dL in the patient and (41.652 \pm 4.018) mg/dL in the control groups. The results showed a significant decrease (P \leq 0.01) in the level of HDL-C in sera of the patient group compared to the control group. Figure 5

Figure 5: Mean level of HDL-C in the sera of the samples under study.

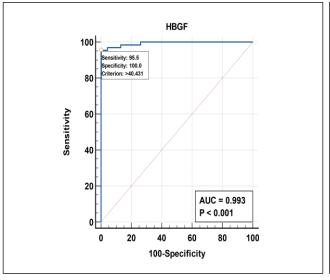
Researchers found that HDL-C is a natural antioxidant that prevents LDL oxidation. This means that they protect against atherosclerosis and its development [38]. In addition to the role of HDL-C in cholesterol removing from phagocytic foam cells and delivering it to the liver to be processed and secreted in the bile, epidemiological studies have indicated that a low level of HDL-C is considered a vital indicator for predicting atherosclerosis and cardiovascular diseases [39]. Epidemiological evidence suggests that there is an inverse relationship between HDL-C levels and ASCVD [40].

Table 2 showed that the mean \pm SD of the level of LDL-C was (147.256 \pm 6.145) mg/dL in the patient and (139.711 \pm 8.535) mg/dL in the control groups. The results showed a significant increase (P \leq 0.01) in the level of LDL-C in the patient group compared to the control group. Figure 6

Figure 6: Mean level of LDL-C in the sera of the samples under study.

Most of the cholesterol in the body is transported by lipoproteins, which in turn transport it to different parts of the body to perform different roles depending on its functional need [41]. Many studies have indicated the role of LDL-C in causing coronary artery disease, represented by atherosclerosis, as high levels of it indicate To the risk of developing atherosclerosis, because the disturbance of blood fats leads to accelerating the processes of atherosclerosis and is considered the main factor causing damage to vascular endothelial cells and vascular smooth muscle cells [42]. They also found that the subunits of LDL-C represented by Small dense LDL(sdLDL) have a major role in causing atherosclerosis and other diseases. Coronary arteries By collecting data from 21 studies that included 53% of them men and whose average age was 67 years, they found that high levels of sdLDL were an important risk factor for developing coronary artery disease [43]. The results of recent studies also indicate that LDL has a role in the occurrence of ASCVD through follow-up conducted for a 3 to 9 years in a row, and it was found that high levels of it indicate a role in causing and promoting the disease [44].

ROC statistical analysis was used for the parameters under study, and the results are shown in Table 3.


Table 3: Sensitivity, specificity, and area under the curve values for the variables under study for both groups of patients and healthy people.

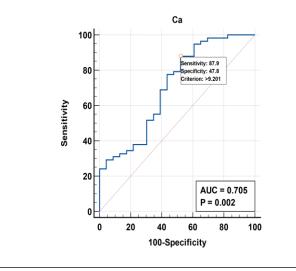
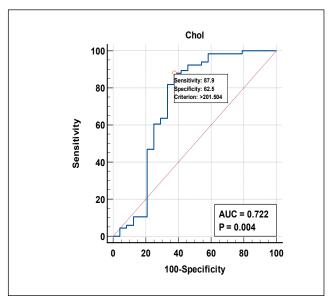

Variables	Cut-off value	Sensitivity %	Specificity %	AUC	P-value
HBGF	>40.431	95.45	100.00	0.993	<0.0001
Са	>9.201	87.93	47.83	0.705	0.0024
Cholesterol	>201.504	87.88	62.50	0.722	< 0.0042
TG	>104.29	87.88	87.50	0.917	<0.0001
HDL-C	≤35.655	87.88	91.67	0.953	<0.0001
LDL-C	>141.7658	87.88	62.50	0.754	<0.0001

Table 3 shows that the Cut-off value for HBGF was higher than 40.431 pg/ml, the sensitivity value was 95.45%, and the area under the curve(AUC) values were 0.993. It is clear from the results that the Cutt-of value indicates that values higher than >40.431 pg/ml have outstanding accuracy in diagnosing the disease, Figure 7

Table 3 shows that the Cut-off value for calcium was higher than >9.201 mg/dL, the sensitivity value was 87.93%, while the area under the curve values were 0.705.

The results indicate that the sensitivity of the calcium level to the disease was very good but the accuracy was good, Figure 8


Figure 7: ROC curve for HBGF level

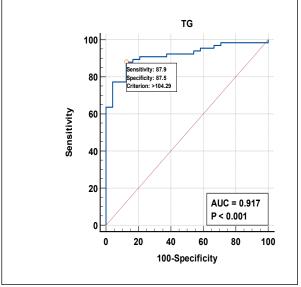

Figure 8: ROC curve for calcium level.

Table 3 shows that the Cutt-of value for cholesterol was higher than > 201.504 mg/dL, the sensitivity value was 87.88 %, , while the area under the curve values were 0.917 .the results showed that the sensitivity of cholesterol for the disease was statistically high, and the accuracy of the area under the curve was excellent. Figure 9

Table 3 shows that the Cut-off value for TG was higher than >104.29 mg/dL, the sensitivity value was 87.88%, while the area under the curve values were 0.917. The results showed that the sensitivity of the parameter to the disease was high, and the accuracy of the area under the curve was acceptable. Figure 10

Table 3 shows that the Cut-off value for LDL-C was higher than >141.7658 mg/dL, the sensitivity value was 87.88%, while the area under the curve values were 0.754. The results showed that the sensitivity and specificity of the parameter for the disease were statistically significant, and it was found that the accuracy of the area under the curve was outstanding. Figure 11.

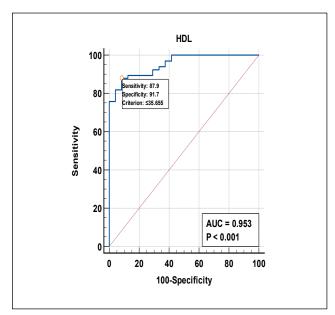


Figure 9: ROC curve for cholesterol level.

Figure 10: ROC curve for TG level

Table 3 shows that the Cutt-of HDL-C value was less than ≤ 35.655 mg/dL, the sensitivity value was 87.88 %, and the area under the curve values were 0.953. The results indicate that the sensitivity of the parameter for the disease was statistically high, and it was found that the accuracy of the area under the curve was outstanding. Figure 12.

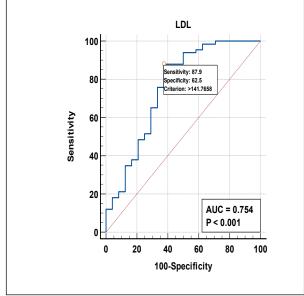


Figure 11: ROC curve for HDL-C level.

Figure 12 : ROC curve for LDL-C level.

Conclusions

Heparin-binding growth factor showed a significant increase in sera of patients with atherosclerosis, and the results indicate that HBGF is a sensitive parameter for diagnosing the disease with high accuracy.

References

- 1. He, C., Ma, Y. L., Wang, C. S., Jiang, L., Zhang, J. H., Yao, Y., ... & Yuan, J. Q. (2017). Long-term outcomes of primary percutaneous coronary intervention with secondgeneration drug-eluting stents in ST-elevation myocardial infarction patients caused by very late stent thrombosis. Chinese Medical J., 130(08), 929-935
- 2. Ross R. Atherosclerosis An Inflammatory Disease". New England Journal of Medicine. 1999;340:115-26.
- 3. Lacolley P, Regnault V, Nicoletti A, Li Z and Michel JB. The vascular smooth muscle cell in arterial pathology: a cell that can take on multiple roles. Cardiovascular Res. 2012; 95(2): 194-204. <DOI: http://dx.doi.org/10.1093/cvr/cvs135 >
- 4. Reitsma S., Slaaf D.W., Vink H., van Zandvoort M.A.M.J., Oude Egbrink M.G. The endothelial glycocalyx: Composition, functions, and visualization. Pflug. Arch. Eur. J. Physiol. 2007;454:345–359. doi: 10.1007/s00424-007-0212-8
- 5. Ardestani S.B., Eftedal I., Pedersen M., Jeppesen P.B., Nørregaard R., Matchkov V.V. Endothelial dysfunction in small arteries and early signs of atherosclerosis in ApoE knockout rats. Sci. Rep. 2020;10:15296. doi: 10.1038/s41598-020-72338-3.
- 6. Soehnlein O, Libby P. Targeting Inflammation in Atherosclerosis From Experimental Insights to the Clinic. Nat Rev Drug Discov (2021) 20(8):589–610. doi: 10.1038/s41573-021-00198-1
- 7. Sun H.-J., Wu Z.-Y., Nie X.-W., Bian J.-S. Role of Endothelial Dysfunction in Cardiovascular Diseases: The Link between Inflammation and Hydrogen Sulfide. Front. Pharmacol. 2020;10:1568. doi: 10.3389/fphar.2019.01568
- 8. Muramatsu T. Midkine, a heparin-binding cytokine with multiple roles in development, repair and diseases. Proc Jpn Acad Ser B Phys Biol Sci (2010) 86(4):410–25. doi: 10.2183/pjab.86.410
- 9. Muramatsu T. Structure and function of midkine as the basis of its pharmacological effects. Br J Pharmacol (2014) 171(4):814–26. doi: 10.1111/bph.12353
- 10. Cai, Y. Q., Lv, Y., Mo, Z. C., Lei, J., Zhu, J. L., & Zhong, Q. Q. (2020). Multiple pathophysiological roles of midkine in human disease. Cytokine, 135, 155242. https://doi.org/10.1016/j.cyto.2020.155242
- 11. Weckbach LT, Groesser L, Borgolte J, Pagel JI, Pogoda F, Schymeinsky J, et al.. Midkine acts as proangiogenic cytokine in hypoxia-induced angiogenesis. Am J Physiol Heart Circ Physiol (2012) 303(4):H429–38. doi: 10.1152/ajpheart.00934.2011
- 12. Zhang, Z. Z., Wang, G., Yin, S. H., & Yu, X. H. (2021). Midkine: A multifaceted driver of atherosclerosis. Clinica chimica acta; international journal of clinical chemistry, 521, 251–257. https://doi.org/10.1016/j.cca.2021.07.024
- 13. MasudaT,MaedaK,SatoWetal.GrowthfactorMidkinepromotesT-cell activation through nuclear factor of activated T cells signaling and Th1 cell differentiation in lupus nephritis. Am J Pathol 2017; 187: 740–751
- 14. Pirillo, A.; Casula, M.; Olmastroni, E.; Norata, G.D.; Catapano, A.L. Global epidemiology of dyslipidaemias. Nat. Rev. Cardiol. 2021, 18, 689–700.
- 15. Balling, M.; Nordestgaard, B.G.; Langsted, A.; Varbo, A.; Kamstrup, P.R.; Afzal, S. Small dense low-density lipoprotein cholesterol predicts atherosclerotic cardiovascular disease in the Copenhagen general population study. J. Am. Coll. Cardiol. 2020, 75, 2873–2875.

- 16. Domanski, M.J.; Tian, X.; Wu, C.O.; Reis, J.P.; Dey, A.K.; Gu, Y.; Zhao, L.; Bae, S.; Liu, K.; Hasan, A.A.; et al. Time Course of LDL Cholesterol Exposure and Cardiovascular Disease Event Risk. J. Am. Coll. Cardiol. 2020, 76, 1507–1516.
- 17. Poznyak A.V., Wu W.-K., Melnichenko A.A., Wetzker R., Sukhorukov V., Markin A.M., Khotina V.A., Orekhov A.N. Signaling Pathways and Key Genes Involved in Regulation of Foam Cell Formation in Atherosclerosis. Cells. 2020;9:584. doi: 10.3390/cells9030584
- 18. Connerty, H.V.Y Biggs, A.R. Am. J. Clin. Path. 45:290 (1966)
- 19. Tietz, N. W. (1999). Text book of clinical chemistry, CA Burtis, ER Ashwood. WB Saunders, 652, 1431.
- 20. Takada, S., Sakakima, H., Matsuyama, T., Otsuka, S., Nakanishi, K., Norimatsu, K., Itashiki, Y., Tani, A. and Kikuchi, K. (2020). Disruption of Midkine gene reduces traumatic brain injury through the modulation of neuroinflammation. Journal of Neuroinflammation, 17(1): 40.
- 21. P. Lin, H.H. Ji, Y.J. Li, S.D. Guo ."Macrophage Plasticity and Atheroscleros Therapy", Front Mol Biosci 8, 67979(2021).
- 22. M.K. Khoury, H. Yang, B. Liu. "Macrophage Biology In Cardiovascular Diseases, Arterioscler". Thromb. Vasc. Biol. 41(2), e77– e81(2021).
- 23. Alkado,O,A; Al-Helaly, L.A. Relationship of Midkine in Myocardial Infarction patients and some biochemical parameters .2022, Volume 08, Issue 04, Pages 245-249.
- 24. M Hemeed, R. N.; Al-Tu'ma, F. J.; Al-Koofee, A. F. and Al-Mayali, A. H. (2020). Relationship of angiotensin converting enzyme (I/D) polymorphism (rs4646994) and coronary heart disease among a male Iraqi population with type 2 diabetes mellitus. Journal of Diabetes and Metabolic Disorders, 19(2): 1227–1232.
- 25. Obeda A. Al-Kado a ,Luay A. Al-Helalyb. Study of the Midkine level and its Correlation with toxic and Essential Metals in Patients with Atherosclerosis. Volume 66, Issue 5, May 2023, Page 161-16DOI: 10.21608/EJCHEM.2022.148718.6427.
- 26. Guzel S, S Cinemre FB, Guzel EC, Kucukyalcin V, Kiziler AR, Cavusoglu C, Gulyasar T, Cinemre H, Aydemir B. Midkine levels and its relationship with atherosclerotic risk factors in essential hypertensive patients. Niger J Clin Pract. 2018 Jul;21(7):894-900. doi: 10.4103/njcp.njcp_309_17.
- 27. Shima Raskh. The Importance and Role of Calcium on the Growth and Development of Children and Its Complications. Volume-7, Issue-6 (November 2020) .https://doi.org/10.31033/ijrasb.7.6.24
- 28. Gallo L, Faniello MC, Canino G, et al. Serum calcium increase correlates with worsening of lipid profile: an observational study on a large cohort from South Italy. Medicine (Baltimore). 2016;95(8):e2774
- 29. Larsson SC, Burgess S, Michaëlsson K. Association of Genetic Variants Related to Serum Calcium Levels With Coronary Artery Disease and Myocardial Infarction. JAMA. 2017 Jul 25;318(4):371-380. doi: 10.1001/jama.2017.8981
- 30. Park B, Lee Y. Borderline high serum calcium levels are associated with arterial stiffness and 10-year cardiovascular disease risk determined by Framingham risk score. J Clin Hypertens (Greenwich). 2019 May;21(5):668-673. doi: 10.1111/jch.13532. Epub 2019 Apr 2. PMID: 30941878;

- 31. Woo SH, Kim DY, Choi JH. Roles of Vascular Smooth Muscle Cells in Atherosclerotic Calcification. J Lipid Atheroscler. 2023 May;12(2):106-118. doi: 10.12997/jla.2023.12.2.106. Epub 2023 May 3.
- 32. Jeong SM, Choi S, Kim K, Kim SM, Lee G, Park SY, Kim YY, Son JS, Yun JM, Park SM. Effect of Change in Total Cholesterol Levels on Cardiovascular Disease Among Young Adults. J Am Heart Assoc. 2018 Jun 13;7(12):e008819. doi: 10.1161/JAHA.118.008819. PMID: 29899019; PMCID: PMC6220545.
- 33. Peters SA, Singhateh Y, Mackay D, Huxley RR, Woodward M. Total cholesterol as a risk factor for coronary heart disease and stroke in women compared with men: A systematic review and meta-analysis. Atherosclerosis. 2016 May;248:123-31. doi: 10.1016/j.atherosclerosis.2016.03.016. Epub 2016 Mar 15.
- 34. Shabana, Shahid SU, Sarwar S. The abnormal lipid profile in obesity and coronary heart disease (CHD) in Pakistani subjects. Lipids Health Dis. 2020 Apr 14;19(1):73. doi: 10.1186/s12944-020-01248-0. PMID: 32290855; PMCID: PMC7158030.
- 35. John, M; Chapman, Henry N. Ginsberg, Pierre Amarenco, Felicita Andreotti, Jan Borén, Alberico L. Catapano, Olivier S. Descamps, Edward Fisher, Petri T. Kovanen, Jan Albert Kuivenhoven, Philippe Lesnik, Luis Masana, Børge G. Nordestgaard, Kausik K. Ray, Zeljko Reiner, Marja-Riitta Taskinen, Lale Tokgözoglu, Anne Tybjærg-Hansen, Gerald F. Watts, for the European Atherosclerosis Society Consensus Panel, Triglyceride-rich lipoproteins and high-density lipoprotein cholesterol in patients at high risk of cardiovascular disease: evidence and guidance for management, European Heart Journal, Volume 32, Issue 11, June 2011, Pages 1345–1361
- 36. Sandesara, P. B., Virani, S. S., Fazio, S., & Shapiro, M. D. (2019). The forgotten lipids: Triglycerides, remnant cholesterol, and atherosclerotic cardiovascular disease risk. Endocrine Reviews, 40(2), 537–557. https://doi.org/10.1210/er.2018-00184
- 37. Xepapadaki E, Zvintzou E, Kalogeropoulou C, Filou S, Kypreos KE. The Antioxidant Function of HDL in Atherosclerosis. Angiology. 2020;71(2):112-121. doi:10.1177/0003319719854609
- 38. Casula M, Colpani O, Xie S, Catapano AL, Baragetti A.HDL in Atherosclerotic Cardiovascular Disease: In Search of a Role. Cells. 2021 Jul 23;10(8):1869. doi: 10.3390/cells10081869.
- 39. Schoch L, Alcover S, Padró T, Ben-Aicha S, Mendieta G, Badimon L, Vilahur G. Update of HDL in atherosclerotic cardiovascular disease. Clin Investig Arterioscler. 2023 Nov-Dec;35(6):297-314. English, Spanish. doi: 10.1016/j.arteri.2023.10.002. Epub 2023 Nov 7. PMID: 37940388.
- 40. Guan J, Wu L, Xiao Q, Pan L. Levels and clinical significance of serum homocysteine (Hcy), high-density lipoprotein cholesterol (HDL-C), vaspin, and visfatin in elderly patients with different types of coronary heart disease. Ann Palliat Med. 2021 May;10(5):5679-5686. doi: 10.21037/apm-21-1001.
- 41. Jamil S., Jamil G., Mesameh H., et al. Risk factor comparison in young patients presenting with acute coronary syndrome with atherosclerotic coronary artery disease vs. angiographically normal coronaries. International Journal of Medical Sciences . 2021;18(15):3526–3532. doi: 10.7150/ijms.60869.
- 42. Peng K.-G., Yu H.-L. Characteristic analysis of clinical coronary heart disease and coronary artery disease concerning young and middle-aged male patients. World Journal of Clinical Cases . 2021;9(25):7358–7364. doi: 10.12998/wjcc.v9.i25.

43. Liou L, Kaptoge S. Association of small, dense LDL-cholesterol concentration and lipoprotein particle characteristics with coronary heart disease: A systematic review and meta-analysis. PLoS One. 2020 Nov 9;15(11):e0241993. doi: 10.1371/journal.pone.0241993.

Balling M, Afzal S, Davey Smith G, Varbo A, Langsted A, Kamstrup PR, Nordestgaard BG. Elevated LDL Triglycerides and Atherosclerotic Risk. J Am Coll Cardiol. 2023 Jan 17;81(2):136-152. doi: 10.1016/j.jacc.2022.10.019. PMID: 36631208.

Samarra Journal of Pure and Applied Science

www.sjpas.com

p ISSN: 2663-7405 e ISSN: 2789-6838

حساسية عامل النمو المرتبط بالهيبارين كمؤشر تشخيصي لمرض تصلب الشرايين

ساره عماد عبدالواحد1*، رفاه رزوق حمید السامرائی2

1- قسم التحليلات المرضية ، كلية العلوم التطبيقية، جامعة سامراء، العراق

2- قسم الكيمياء التطبيقية ، كلية العلوم التطبيقية، جامعة سامراء، العراق

معلومات البحث: الخلاصة:

تأريخ الاستلام: 2024/05/04 تاريخ التعديل: 2023/05/10 تأريخ القبول: 2023/05/13 تاريخ المنشر: 2024/10/01

الكلمات المفتاحية:

تصلب الشر ابين، عامل النمو المرتبط بالهييارين، الكالسيوم، الكوليسترول، الكليسريدات الثلاثية

معلومات المؤلف

الايميل: الموبايل:

هدفت الدراسة إلى تقييم مستوى عامل النمو المرتبط بالهيبارين (HBGF) باعتباره عامل حساس لتصلب الشرايين. شملت الدراسة جمع 90 عينة مصل (60 عينة للمرضى الذين يعانون من تصلب الشرايين و 30 عينة من الأفراد الأصحاء كمجموعة مراقبة) لتقييم مستوى HBGF والكالسيوم والدهون في المرضى الذين يعانون من تصلب الشرايين. تم جمع عينات المرضى من مركز ابن البيطار لجراحة القلب في محافظة بغداد للفترة من 1/1/202 ولغاية 2024/1/1. مستويات القلب في محافظة بغداد للفترة من الكثافة (TC)، والدهون الثلاثية (TG)، وكوليسترول البروتين الدهني عالى الكثافة (HDL-C)، وكوليسترول البروتين الدهني منخفض الكثافة (LDL-C). أظهرت النتائج زيادة معنوية في مستويات الدهني منخفض الكثافة (LDL-C) والكالسيوم، مع انخفاض معنوي في مستويات في مجموعة المرضى مقارنة بمجموعة السيطرة. أظهر تحليل منحنى خاصية تشغيل في مجموعة المرضى مقارنة بمجموعة السيطرة. أظهر تحليل منحنى خاصية تشغيل المستقبل أن المساحة تحت المنحنى له HBGF وعامل حساس لتشخيص المرض. من النتائج، يمكننا أن نستنتج أن HBGF هو عامل حساس لتشخيص تصلب الشرايين بحساسية عالية.