

Samarra Journal of Pure and Applied Science

www.sjpas.com

p ISSN: 2663-7405 e ISSN: 2789-6838

Ecological study for diatoms in the Tigris River within Tikrit city, Iraq

Amna Mohammed Jassim 1, Riedh Abass Abdul-Jabbar 2 and Shaimaa Fatih Ali *2

- 1- Department of Pathological Analyzes, College of Applied Science, Samarra University, Iraq.
- 2- Biology Department, College of Science, Tikrit University, Iraq.

This work is licensed under a **Creative Commons Attribution 4.0 International License**

https://doi.org/10.54153/sjpas.2024.v6i3(2).869

Article Information

Received: 31/03/2024 Revised: 30/04/2024 Accepted: 02/05/2024 Published: 01/10/2024

Keywords:

Physical and chemical characteristics, Diatoms, Tigris River

Corresponding Author

E-mail: sh_f.ali@tu.edu.iq Mobile: 07706699094

Abstract

An ecological study was conducted on diatoms in the Tigris River of Al-Balaj area in Tikrit city, from October 2018 to May 2019. The present study included measuring some physical and chemical characteristics of water, as well as qualitative study of diatoms, the results of current study showed that: Air and water temperature ranged from (10-34)°C and (10-25)°C respectively, Turbidity (10-50) NTU, TDS ranged from (824-1600) mg. l⁻¹, pH ranged 6.3-8.5, DO ranged between (1.5-3.2) mg. l⁻¹, Hardness ranged (124-270) mg. l⁻¹, Silica ranged between (1.47-2.53) mg. l⁻¹, phosphate (23.19-24.83) μg. l⁻¹, and NO₃ ranged from 5.61 to 11.42 μg. l⁻¹. Diagnosed of diatom was 51 species belonging to 18 genera were recorded. The dominant genera during the study period were: *Cyclotella,Melosira ,Achnathes , Cocconeis , Synedra , Fragilaria ,Navicula ,Gyrosigma ,Surirella ,Cymatopleura ,Amphora ,Gomphonema ,Cymbella Aulacoseira ,Cosinodiscus*. It reflects the water's quality and determines the extent and type of pollution.

Introduction:

Phytoplankton including diatoms, play a significant role in the food chain in water ecosystems due to their process of photosynthesis. Algae are regarded as the primary producers in the aquatic ecosystems [1,2]. Their abundance is influenced by environmental elements such as water depth, seasonal variations, light intensity, and the availability of zooplankton [3].

Diatoms have been chosen as diagnostic instruments for freshwater resources due to their successfully applied in various countries and different water bodies [4]. They have been used as indicators of environmental conditions, including organic pollution in rivers and ponds. Being widespread microorganisms, they are sensitive to various environmental factors, including light, temperature, flow rate, dissolved oxygen concentration, and pH. They are also excellent markers of nutritional enrichment, organic contamination, and climatic change [5].

Numerous investigations have been carried out concerning the diatom in the Tigris River [6, 7, 8, 9, 10, 11]. The aim of this study identifying the dominant of algae species and percentages their species within the study areas.

Material and Methods Study area

The study was conducted in the area located on the right bank of the Tigris River, approximately 180 kilometers north of Baghdad and 330 kilometers south of Mosul. Salah Al-Din province is situated at a longitude between 43.35° E and 34.27° N. Tikrit city serves as the center of the province, Al-Balaj region is located in the city's center, it's the study site at a longitude between 43.42° .36 E and 34.38° .11 N (Fig.1), close to the river, and acts as the province's geographic center. In addition to its geographic location and agricultural area, this station was chosen for the study because it is close to the Tigris River and there is little available information about it.

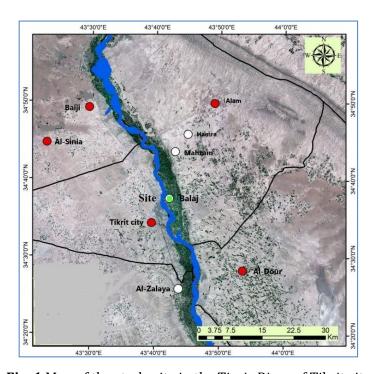


Fig. 1 Map of the study site in the Tigris River of Tikrit city

Sample collection

Samples water was collected monthly from the Tigris River of the Balaj site, in the morning from October 2018 to May 2019. Chemical and physical analyses of water as described by APHA [12] (Table 1). diatom samples collected for the qualitative study by phytoplankton net (mesh $20\mu m$), the samples are in polyethylene containers, and preserved by Lugol's iodine solution [13]. The diatoms were identified using the following references [14, 15, 16, 17, 18], and their classification was based on Algaebase 2020 website.

Table .1 Standard methods for laboratory measurements

No.	Factors	Devices or Tools	Reference
1	Air Temperature (C°)	Mercuric Thermometer	
2	Water Temperature (C°)	Mercuric Thermometer	
3	Turbidity NTU	Turbidity meter	[12]
4	Total Dissolved Solids TDS mg. l^{-1}	Conductivity Multi meter	[12]

5	Dissolved oxygen (DO) mg. l-1	Method Winkler Azide Modification	[12]
6	Total Hardness mg CaCO ₃ l-1	Titration with Na ₂ EDTA	[12]
7	Reactive Silicate mg. l-1	Spectrophotometer (810 nm)	[12]
8	Reactive Nitrate μg. l-1	Cadmium Reduction method	[12]
9	Reactive Phosphate µ. l-1	Ascorbic Acid method	[12]

Statistical Analysis

The Statistical Package for the Social Science SPSS 20.0 program was used to analyze the results ($P \le 0.05$).

Results and Discussion

The results showed that the air and water temperature ranged (10-34) $\mathring{\text{C}}$ and (10-25) $\mathring{\text{C}}$ respectively (Table 2). These results were consistent with [19], and [20].

Table. 2 Physical and chemical characteristics values (mean ± Standard deviation) of the Tigris River

Ecological Factors	Values		
Air Temperature (C°)	10 - 34		
	21.12 ± 8.09		
Water Temperature (C°)	10 – 25		
	16.25 ± 4.81		
рН	6.3 – 8.5		
	7.71 ± 0.710		
Turbidity	10 – 50		
(NTU)	28.78 ± 14.27		
Total dissolved Solids (TDS) mg. l-1	824-1600		
	1102.8 ± 42.11		
рН	6.3-8.5		
	7.71 ± 0.397		
Dissolved Oxygen (DO) mg. l-1	1.5 – 3.2		
	1.97 ± 0.62		
T.H	124 – 230		
mg. l ⁻¹	202 ± 41.30		
Silica (SiO ₂)	1.472 – 2.538		
mg. l∙¹	2.41 ± 0.502		
Phosphate (PO ₄)	23.199 - 24.837		
μg. l ⁻¹	24.01 ± 0.650		
Nitrate (NO ₃) μg. l ⁻¹	24.03 - 29.32		
	25.93 ± 1.77		

Turbidity value was recorded (10-45) NTU in May and February 2019 respectively. These results were higher than [20]. However, they were significantly lower than the results obtained by [8], [21], [22] and [23].

The increase in turbidity during the later months of the study period may be attributed to the rise in water levels, leading to the exposure of rocks, soil weathering, and dead plant parts, which lead to reduction in light penetration through the water column. As well as, wastewater discharge and industrial waste directly into the river, as well as agricultural activities [24].

TDS values ranged between (824-1600) mg. l⁻¹ in May 2019 and October 2018 respectively, the increase of TDS concentration may be to anthropogenic industrial and domestic waste, evaporation processes.

pH is considered an indicator of the balance between acidity and alkalinity in water, and it is the dominant factor influencing most reactions and transformations that occur in water [25]. The results ranged from 6.3 to 8.5 in October 2018 and January 2019 respectively. The Tigris River is neutral to slightly alkaline in pH [26].

DO value was recorded (1.5-3.2) mg. l⁻¹ in January 2019 and May 2019. Its important role in assessing water quality for aquatic life [27]. These results lower than [8], [20], and [28], [23].

Low oxygen levels in the river due to pollutants or water temperature, which has an inverse relationship with dissolved oxygen.

Total hardness concentration ranged between (124-270) mg. l⁻¹ May 2019 and April 2019, the variation of hardness values may be to the decrease in water levels during the summer season and the evaporation that occurs in water bodies, which an increase in salinity and hardness.

The results showed Silica concentrations ranged (1.472 - 3.392) μ g. l^{-1} in May 2019 and December2018 respectively. The silica found in this study may be due to the increased water flow and erosion brought on by rising water levels, which causes silica to rise to the water's surface [29]. The seasonal variation of silica salts is related to the diatoms' flowering period, which is incorporated in the structure's composition in a certain ratio [30]. It is one of the important factors that influence how aquatic organisms' development, particularly diatoms, However, compared to other nutrients, its availability in the aquatic environment is lower.

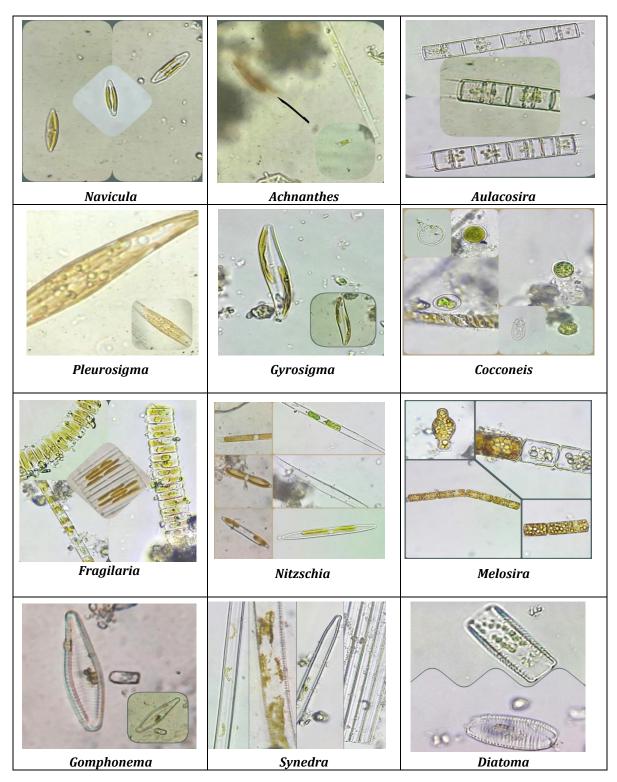
Nitrates are an important element in determining the growth of phytoplankton, and NO_3 concentration was recorded (6.95-11.42) µg. l^{-1} , while PO_4 ranged from 23.199 to 24.837 µg. l^{-1} , these results higher than [8], [20], [28], [31], and [23]. In general, the Balaj area has shown a noticeable increase in plant nutrients due to its status as a tourist destination where people spend their summers and engage in recreational activities throughout the year, leading to an increase in organic, industrial, domestic, and urban waste discharged into the Tigris River.

Human activities in the Balaj area contribute to increased microbial activity and oxidation of organic matter, resulting in the continuous mixing of sediments due to the influence of currents, leading to the proliferation of phytoplankton biomass and increased primary productivity. Additionally, the upward flow of cold deep water plays a role in bringing nutrients from the depths to the surface waters of the water column [32].

Note that the conditions of the river were unstable during the winter and spring seasons, which had an impact on the ecosystem's biological and chemical conditions. Diatoms are influenced by a number of important aspects, including the riverbed's features and the speed of the water. Ali *et al.* [2] mentioned that small local fluctuations in the current between the riverbanks and the middle of the river are thought to have a greater impact on the aquatic environment. In comparison to other aquatic habitats, flowing rivers typically have higher densities of algae [33].

The current study revealed the dominance of certain diatom orders throughout the study period. This study identified 51 diatom species belonging to 18 genera and 11 orders were found in the Balaj site (Table 3, Fig.2). The order Fragilariales was the most dominant, accounting for 25.4% of the total, *Synedra* and *Fragilaria* were its two most frequent genera as shown in Table 3.

The order Bacillariales followed with a percentage of 17.6%, including the genera *Pleurosigma*, *Nitzschia* and *Diatoma*. The order Aulacoseirales accounted for 15.6% with the predominant genus *Aulacoseira*. Surirellales represented 9.8% with well-known genera such as *Cymatopleura solea* and *Surirella* spp. The order Centrales accounted for 7.8%, with the important genus *Cyclotella*. The order Naviculales represented 5.8% and included the genera *Navicula*. and *Gyrosigma*. Achnanthales, Coscinodiscales, Cymbellales, and Melosirales, recorded 3.9%. *Gomphonema*, *Achnanthes*, *Melosiria varains*, *Cymbella aspera*, *Coscinodiscus* and *Cocconeis placentula* were the dominating genera in these orders. Lastly, the order Thalassiophysales which made up 1.9% of the total, the genus *Amphora* was being the predominant one.


Table .3 Diatoms and their proportions in the Tigris River at the study site

Bacillariophyta	No. of diatom species	%	Orders and genera	Dimensions of genera
Achnanthales	2	3.9	Achnanthales	10-20 mm long Less than 5mm wide
Aciliantifales	Z		Cocconeis	15-98 mm long 4-40 mm wide
Aulaciserales	8	15.6	Aulacoseira	4-20 mm diameter
Centrales	4	7.8	Cyclotella	5-30 mm diameter
Coscinodiscales	2	3.9	Coscinodiscus	30-500um diameter
County allala a	2	3.9	Cymbella	20-22 mm long 7-32 mm wide
Cymbellales	2		Gomphonema	8-120 mm long 3.5-17 mm wide
Evenilovialas	13	25.4	Fragilaria	10-170 mm long 2-5 mm wide
Fragilariales			Synedra	60-400 mm long 5-9 mm wide
	3	5.8	Naviculales	6-42mm long 4-12 mm wide
Naviculales			Gyrosigma	60-400 mm long 11-40 mm wide
		17.6	Nitzschia	5-100 mm long 2.5-12 mm wide
Bacillariales	9		Diatoma	8-75 mm long 7-18 mm wide
			Pleurosigma	150-380 mm long 20-30 mm wide
Melosirales	2	3.9	Melosira	8-40 mm in diameter
	_			16-120 mm long
C : 11 1	F	9.8	Surirella	12-45 mm wide
Surirellales	5		C 1	30-300 mm long
			Cymatopleura	10-90 mm wide
Thalassiophyscales	1	1.9	Amphora	80-14 mm long 7-10 mm wide

Algae are among the fastest-growing plant floaters in river populations. Their response to environmental changes is evident, and the quantity of plant floaters can double daily during blooms and the availability of plant nutrients. Diatoms, in particular, are the most affected by nutrient availability, forming large colonies of billions of cells until the plant nutrients become scarce [19].

When diatoms are exposed to increased nutrients during favorable growth conditions, typically in spring, they take advantage of their maximum reproduction rates. These rates vary from one species to another, with the fastest-growing species dominating first.

As a result, diversity decreases, and one or some of these species become dominant. In some cases, a single species dominates a bloom, referred to as single species blooms. Nutrient depletion by diatoms is the prevailing process during bloom development, and water temperature plays a significant role in this context [18].

Fig.2 Photomicrographs of *Diatom* genera recorded in the study area of Tigris River by Binocular Microscopes (BioBlue) (40X)

Conclusions

This study demonstrated the physical and chemical characteristics impact and various environmental conditions on diatom distribution and spread. Additionally, it may be seasonal changes in water levels played significant roles as limiting factors for the distribution and density of phytoplankton diatoms, it may be indexing the water quality of the Tigris River.

Acknowledged

The Department of Biology at the College of Science at Tikrit University is acknowledged by the authors for its support of this effort.

References

- Al-Sherif, E.A, Abdel-Hammeed, M.S., Mahmoud, M.A. & Ahmad, H.S. (2015). Use of cyanobacteria and organic fertilizer mixture as soil Bio remediation. American Eurasian. J. Agric. and Environ. Sci; 15 (5): 794-799.
 DOI: 10.5829/idosi.aejaes.2015.15.5.93245
- 2. Ali. S.F, Hassan, F.M. & Abdul-Jabar, R.A. (2019). Ecological Study of Epiphytic diatoms on tow Submerged Aquatic Macrophytes in Tigris River, Iraq, 50 (4): 1109-1119. DOI: https://doi.org/10.36103/ijas.v50i4.756
- 3. Al Hassany, J. S., & Al Bayaty, H. E. (2017). Screening of epiphytic algae on the aquatic plant Phragmites australis inhabiting Tigris River in Al-Jadria site, Baghdad, Iraq. *Baghdad science journal*, *14*(1), 0085-0085. **DOI:** https://doi.org/10.21123/bsj.2017.14.1.0085
- 4. Taylor, J. C., Harding, W. R., & Archibald, C. G. M. (2007). An illustrated guide to some common diatom species from South Africa Pretoria: Water Research Commission: 1-225.
- 5. Ahmed, A. M. (2017). Determining the Optimal Method, Placement, and Level of Phosphate Fertilizer Addition and Its Effect on Soil Phosphorus Status and Growth of Yellow Corn (*Zea mays* L.). M.Sc. thesis, Tikrit University.
- 6. Talib, A. H., Hassan, F. M., & Sadoon, W. A. (2014). An environmental study on phytoplankton (diatoms) in Al-Yusifiya river, Iraq. Baghdad Sci. J., 11(3), 1301-1309. **DOI:** https://doi.org/10.21123/bsj.2014.11.3.1301-1309
- 7. AL-Nashy, N. H. (2016). Using Diatoms as Bioindicators to Assess AL-Diwaniya River/Iraq. Al-Qadisiyah J. of pure Sci., 12 (4): 64-80.
- 8. Ali, S. F., Abdul-Jabar, R. A., & Hassan, F. M. (2018). Diversity measurement indices of diatom communities in the Tigris River within Wasit Province, Iraq. Baghdad Science Journal, 15(2), 117-22. **DOI:** https://doi.org/10.21123/bsj.2018.15.2.0117
- 9. Al Hassany, J. S., Hassan, F. M., Maulood, B. K., & Al-Saedy, R. N. (2021). REVISION OF ALGAL FLORA (DIATOMS) CHECKLIST IN TIGRIS RIVER WITHIN BAGHDAD CITY-IRAQ. The Iraqi Journal of Agricultural Science, 52(4), 836-858. DOI: https://doi.org/10.36103/ijas.v52i4.1392
- 10. Mahdi, Z. M., & Al-Hussieny, A. A. (2022). Classification of Some Species Algae in the Tigris River within the City of Baghdad-Iraq., 7 (Issue 3): 53 / http://dx.doi.org/10.21931/RB/2022.07.53.
- 11. Toma, J. J. (2023). Study of Algal Diatoms in some water resources in Shaglawa District. Erbil, Kurdistan Region of Iraq. Passer Journal of Basic and Applied Sciences, 5(2), 249-261. HTTPS://DOI.ORG/10.24271/PSR.2023.387164.1261
- 12. APHA, (American Public Health Association) (2017). Standard methods for the Examination of water and wastewater, 23rded. APHA; 8001 street, NW. Washington, DC. 2001 3710.
- 13. Hadi, R.A.M. (1981). Algal studies of the river USK. Ph.D. thesis, University. College Cardiff. 364 pp.
- 14. Hadi, R.A.M and Al-Saboonchi, A.A. (1984). Haroon AKY. Diatoms of the Shatt Al-Arab River. Nova Hedwigia.,39:513-557.

- 15. Wehr, J.P & Sheath, R.G. (2003). Fresh water algae of North America: Ecology and Classification. Elsevier Science, U.S.A. 935p.
- 16. Lavoie, I; Hamilton, P.B; Campeau, S; Grenier, M. & Dillon, P.J (2008). Guide identification des diatomees des rivieres de I, Est du Canada. press de nniver site du Dubec. 254pp.
- 17. Blanco, S, A;varez-Blanco I, I; Gejudo –Figueiras, C. & Becares, E, (2011). Guia delas diatomeas de la cuenca del Duero, Valla dolid, confederacion. Hidrografica del Duero.
- 18. Jr. Orlando, N. (2016). River Algae. Saopaulo State University. Brazil.
- 19. Darweesh, S. F. A. (2017). Water Quality Assessment of Tigris River by Diatoms Community between Al-Azizyah and kut, Iraq. PhD Thesis, Tikrit University.
- 20. Abed, S. A., Ewaid, S.H., & Al-Ansari, N. (2019). Evaluation of water quality in the Tigris River within Baghdad, Iraq using multivariate statistical techniques. In Journal of Physics: Conference Series, 1294: 072025. doi:10.1088/1742-6596/1294/7/072025.
- 21. Al-Shandah, B. T., and Ali, S. F. (2019). Reduction Turbidity of Water in Tikrit Drinking Water Treatment Plant by Using Alum Which was Quantified by a Jar Test Apparatus, with limnological Study of Treated and Raw Water. Indian Journal of Public Health, 10(8). DOI: 10.5958/0976-5506.2019.02126.0
- 22. Jabar, S. S., & Hassan, F. M. (2022). Monitoring the Water Quality of Tigris River by Applied Overall Index of Pollution. In IOP Conference Series: Earth and Environmental Science, 1088 (1):1-13. **DOI** 10.1088/1755-1315/1088/1/012015
- 23. Al-Majmai, G. S. S., Abdul-Jabar, R. A., & Ali, S. F. (2023). Physical and chemical characterization of water in irrigation Al-Ishaqi project. In AIP Conference Proceedings, 2593 (1). AIP Publishing. https://doi.org/10.1063/5.0139832
- 24. Chebet, E. B., Kibet, J. K., & Mbui, D. (2020). The assessment of water quality in river Molo water basin, Kenya. Applied Water Science, 10: 1-10. DOI: 10.1007/s13201-020-1173-8
- 25. Al-Mashhadani, M. H. S. (2019). Environmental Situation of Al-Khowsar River Waters and Some Treatment Techniques. PhD thesis, Mosul University.
- 26. Al-Sudani, I. M. (2021). Water quality assessment of Tigris River using overall index of pollution (OIP). Baghdad Science J., 18(2 (Suppl.)), 1095-1095. DOI: http://dx.doi.org/10.21123/bsj.2021.18.2(Suppl.).1095
- 27. Abdel-Satar, A. M., Ali, M. H., & Goher, M. E. (2017). Indices of water quality and metal pollution of Nile River, Egypt. The Egyptian J. of Aquatic Res., 43(1): 21-29. https://doi.org/10.1016/j.ejar.2016.12.006
- 28. Ali, S. F., Hays H. H., & Abdul-Jabar, R. A. (2021). Application of CCME water quality index for drinking purpose in Tigris River within Wasit Province, Iraq. Caspian Journal of Environmental Sciences, 19(5):781-787. <u>DOI: 10.22124/CJES.2021.5208</u>.
- 29. Al-Jubouri, M.H. S. S. (2009). Ecological and Diagnostic Study of Algae in Cross Sections of the Tigris River within Salahaddin Governorate. M.Sc. thesis, Tikrit University.
- 30. Al-Saadi, H. A. & Al-Daham, N. Q. and Abdul-Jalil, L. (1986). Aquatic Ecology. Directorate of Book House for Printing and Publishing. Mosul University. 538p.
- 31. Ali, S. F., and AL-Shandah, B. T. (2021). Estimation of some plant nutrients and heavy metals in Euphrates River at the cities of Ramadi and Khalidiah. Pollution Research, 40 (1): 354-361.

- 32. Al-Shawi, I. J.M. (2010). Environmental and Classification Study of Phytoplankton in Khor Al-Zubair with Estimation of Total Petroleum Hydrocarbon Levels. PhD thesis, Basra University.
- 33. Sakamoto, S., Lim, W. A., Lu, D., Dai, X., Orlova, T., & Iwataki, M. (2021). Harmful algal blooms and associated fisheries damage in East Asia: Current status and trends in China, Japan, Korea and Russia. Harmful Algae, 102, 101787. https://doi.org/10.1016/j.hal.2020.101787

Samarra Journal of Pure and Applied Science

www.sjpas.com

p ISSN: 2663-7405 e ISSN: 2789-6838

دراسة بيئية للدياتومات في نهر دجلة ضمن مدينة تكريت، العراق

امنة محد جاسم 1*، رياض عباس عبدالجبار2، شيماء فاتح على2

1- قسم التحليلات المرضية، كلية العلوم التطبيقية، جامعة سامراء، العراق

2- قسم علوم الحياة، كلية العلوم، جامعة تكريت، العراق

الخلاصة:

أجريت دراسة بيئية على الدياتومات في نهر دجلة في منطقة البلاج في مدينة تكريت خلال الفترة من تشرين الأول 2018 إلى أيار 2019. وتضمنت الدراسة الحالية قياس بعض الخصائص الفيزيائية والكيميائية المياه، فضلا عن الدراسة النوعية للدياتومات، وكانت النتائج أظهرت الدراسة الحالية أن: درجة حرارة الهواء والماء تراوحت بين (10-30) م° و (10-50) م° على التوالي، والعكورة NTU (50-10) ، وتراوحت المواد الصلبة الذائبة TDS من (824-1600) ملغم. لتر⁻¹، تراوحت الاس الهيدروجيني بين الصلبة الذائبة TDS ، وتراوحت الاوكسجين الذائب بين (1.5-2.3) ملغم. لتر⁻¹ صلادة تتراوح بين (270-124) ملغم. لتر⁻¹ تراوحت نسبة السليكا بين (1.47-2.53) ملغم. لتر⁻¹ ملاء قلترات من 5.61 إلى فوسفات (23.83-23) ميكروغرام. لتر⁻¹، وتراوحت نسبة النيومات وتسجيل 51 نوعاً تتتمي إلى 18 جنساً،:

معلومات البحث:

تأريخ الاستلام: 2024/03/25 تاريخ التعديل: 2023/04/20 تأريخ القبول: 2023/04/27 تاريخ المنشر: 2024/10/01

الكلمات المفتاحية:

الخصائص الفيز يائية والكيميائية، الدايتومات، نهر دجلة

معلومات المؤلف

الايميل: الموبايل: