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Introduction: 
The symbol for one among the most popular significant classes of nearly structures is W1 ⊕

 W4, where W1and W4 and similarly indicated by the naerly Kähler menifold ánd conformal 

locälly Kähler manifóld. Gray and Hervella[4] proved that W1 ∪  W4 ⊂ W1 ⊕  W4 many 

properties of this subclass of the almost Hermitian structure linked closely with the 

properties of neärly Kóhler and lócally confórmal Kähler manifolds. On the other hand, the 

manifold  W1 ⊕  W4 does not coincide with W1and W4. 

Among the most significant topics in differential geometry to create the differential 

geometrical structure synthesis is the almost Hermitian manifold (AH-manifold). In 1960, 

Koto [14] gave his first attempts and found a relation which was almost identical to the Kähler 

manifold and was considered as an entry to the manifold. In 1965 Gray[5], found an extreme 

method to build certain examples from AH-manifold, So the research continued until 1980, 

when Gray & Hervela released their most important results [6]. We have noticed most of the 

studies of this object were done by the language of invariant Koszul [12], but the object will be 

more suitable if it is studied by the method of adjoint G-structure by Kartan [9]. Kirichinko , 

who did a big change of this study ,when he found two new tensors, namely, structure and 

virtual tensors [11]. Elham Mawlood Mouamed [2] in 2021 studied N Generalized 

Conharmonic Curvature Tensor of the Locally Conformal Kahler Manifold. Ali Kalaf [1] in 

2022,  studied M-projective Curvature Tensor of Nearly Kahler Manifold. Finally, Yildirim &  
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Dirik [36] studied certain curvature tensors including the pseudo-projective on some contact 

metric manifolds. 

 

In this paper study projective tensor of Almost kähler manifold (AK- manifold), & found some  

components Projective of Almost Kahler. & proved that the manifold M is a flat holomorphic 

sectional tensor of projective Almost Kahlar manifold & proved that the manifold M has J-

invariant Ricci tensor. Proved that (AK-manifold) M is kahler manifold. Finally, There exists 

relation between Almost Kahlar  manifold (AK-mánifold) and Lócally confórmal Kóhler 

manifold (LCK-manifold) has been found. 

 

Preliminaries 

X(M) should be the smóoth surface. M is avector field module. Let C∞(M) represent an 

operations set on M. "A set {𝑀, 𝐽, 𝑔 = ⟨. , . ⟩}," "where M is" a 2n-dimensional "(𝑛˃1) smoóth" 

manifold, is the manifold Hermitain (H M). Ĵ is an endomorphism of tengent space. TP(Ϻ) , 

(JP)2=јd g=⟨.,.⟩ Matric Reimann "on M ⟨𝐽𝑍, 𝐽𝑊⟩ = "⟨𝑍, 𝑊⟩; 𝑍, 𝑊 ∊ 𝑍(𝑀)"[13]. The besis 

"{e1 … . , en … Je1 … . Jen}" is referred to as { 𝐽, 𝑔 }; the new is constructed using this basis as 

follows "{i1, … in, … i1, … in}"."Where ia=𝜎(ea) and ia= σ (ea)". The basis is referred to "almost 

structure". The farmer's corresponding"{P, … i1, … , in … , i1, … , in}" This an A-frame". 

"The indicators u, g, l and P in the vicinity" "1,…,2n . The" We'll make use of the figures 

"1,2,...,k. Utilize" the indicators "{i1̂ = i1, … . in̂ = in}" "where â = a + n.than form can be used 

to write" a-frame"{p, i1 … , in … . , i1̂ , … in̂}". The fallowing Q-struct forms are ad joint by the 

components matric of the complex structure ỷ and f: 

"(⟨JX, JY⟩Jj
i)" ="(

√−1 In 0

0 −√−1 In

)",  "(gj
i)" ="(

0 In

In 0
),"                (1) 

"Where In is the rank n unit matrix"[11]. 

 

Definition2.1 [9] 

Almost Hermitical structure (AH-structure) on M is a pair of  tensor { J , g = < .,. > }, where g 

=<.,. > is a Riemannian metric and J is an almost complex structure, so that < JҲ, JỶ >=< Ҳ, Ỷ>, 

Ҳ, Ỷ ∈ Ҳ (M) 

 

Theorem2.2[7] 

The arrangement of the AK-manifold structure equations in the adjoined Q-structure takes the 

following forms: 

1) 𝑑ωa = ωb
a⋀ωb + Babcωb⋀ωc; 

2) dωa = −ωa
b⋀ωbBabcωb⋀ωc; 

3) dωb
aωc

a⋀ωb
c + Bb

adcωc⋀ωd + Bbcd
a ωc⋀ωd + (Abd

ac + 2BachBhbd)ωd⋀ωc; 

4) dBabc = Bb
abcωd + Babcdωd − Bdbcωd

a + Badcωd
b + Badbωd

c ; 

 

Definition.2.3 [15] 

A tensor of  Riemannian R. for smooth menifold. M is four-covariant 

tensor  R: LP(M)𝗑LP(M)𝗑LP(M)𝗑LP(M) → ℝ, as it characterized by 

R[(S, T, U, V)] = (R(U, V)T, S) 

R(S, Y)U = ([∇s, ∇t] − ∇[ S, T ])U, 

That is S, Y, U, V ∈ LP(M), and meets each of follows criteria: 
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a) R(S, T, U , V) = −R(T, S, U, V); 

b) R(S, T, U, V) = −R(S, T, V, U); 

c) R(S, T, U , V)  = R(U, V, S, T); 

d) R(S, T, U , V) +  R(S, U, V, T) + R(S, V, T, U) = 0; 

 

Theorem 2.4[7] 

The following forms are given for the elements of the NK-Riemann manifold's curvature 

tensor in adjoined Q-structure space: 

1 − Rbcd
a = 2Bbcd  

a  

2 − Rbcd
â = −4B[c|ab|d]    3 − Rb̂cd

â = −2Bacd  
b  

4 − Rb̂ĉd̂
a = −4B[c|ab|d]   5 − Rb̂ĉd

a = −2Bd  
cab 

6 − Rbĉd̂
a = 2Bb  

adc            7 − Rb̂cd̂
a = 2B      c  

dab  

8 − Rbĉd
â = 2Bdab  

      c            9 − Rb̂ĉd̂
â = B      a  

bcd  

10 − Rbcd̂
â = 2B cab  

    d      11 − Rbcd̂
a = 2BadhBhbc − 4BdahBcbh + Abc

ad  

12 − Rbĉd
a = 4BcahBdbh − Abd

ac − 2BachBhbd 

13 − Rb̂cd̂
â = 4BdbhBcah − Aac

bd − 2BbdhBhac  14 − Rbĉd̂
â = 4BhcdBhab 

15 −  Rb̂ĉd
â = 2BbchBhad + Aad

bc − 4BdahBcbh 

16 − Rb̂cd
a = 4BhabBhdc 

 

Definition 2.5[1] 

The adjoined Q-structure of almost manifold has J-invariant Recci, if and only if,  rab = rb
â = 0. 

 

Main Results 

Definition 3.1[10]. 

The projective manifold is defined as follows: it is a tensor of type (4,0) : 

Pijkl = Rijkl −
1

2n
[rikgjl − rjkgil]       (3.1) 

where Rijkl, ril and gjk are the Riemann tensor, Ricci tensor, and Riemann metric components, 

respectively. This tensor has features that are comparable to those of Riemann curvature, 

Pijkl = −Pjikl = −Pijlk = Pklij. 

 

Definition3.2 [8] 

The Hermitian manifold is a manifold of class in the adjacent Q-structure space: 

R1 if and only if, Rabcd = Râbcd = Râb̂cd = 0; 

 R2 if and only if, Rabcd = Râbcd = 0; 

 R3(RK-manifold) if and only if, Râbcd = 0; 

 

Definition3.3 

The adjacent Q-structure spàce, the Almost manifold is a class manifold.: 

AR1 if and only if, Pabcd = Pâbcd = Pâb̂cd = 0; 

AR2 if and only if, Pabcd = Pâbcd = 0; 

AR3 if and only if, Pâbcd = 0; 

 

Proposition 3.4 [3] 
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Let M be a random AH-manfiold, then AH-structure {J,g = < ., .>} is: 

1. Almost Kahler structure if and only if Bc
ab = Bab

c = 0, B{abc} = B{abc} = 0. 

2. Kahler structure if and only if Bc
ab = Bab

c = 0, Babc = Babc = 0. 

Theorem 3.5 

The compounds of the Almost Kahler projective tensor the following forms provide in the 

adjoined Q-structure: 

Proof: 

1) "Put  i = a, j = b, k = c" , and "l = d, " 

"Pabcd = Rabcd −
1

2n
[racgbd − rbcgad]" 

Pabcd = 2Bbcd  
a −

1

2n
(0) = 2Bbcd

a . 

2) "Put i = â, j = b, k = c",  and "l = d" 

 "Pâbcd = Râbcd −
1

2n
[râcgbd − rbcgâd]" 

Pâbcd = −4B[c|ab|d] −
1

2n
[−rbcδd

a] = −4B[c|ab|d] +
1

2n
[rbcδd

a ]. 

3) "Put i = a, j = b̂,  k = c,  and  l = d" 

"Pab̂cd = Rab̂cd −
1

2n
[racgb̂d − rb̂cgad]" 

Pab̂cd = −2Bacd  
b −

1

2n
[−racδd

b] = −2Bacd
b +

1

2n
[rbcδd

a ]. 

4) "Put  i = a, j = b,   k = ĉ,  and  l = d" 

"Pabĉd = Rabĉd −
1

2n
[raĉgbd − rbĉgad]" 

Pabĉd = 2Bdab  
      c −

1

2n
(0) = 2Bdab  

      c . 

5) "Put i = a, j = b,  k = c, " "and  l = d̂" 

"Pabcd̂ = Rabcd̂ −
1

2n
[racgbd̂ − rbcgad̂]" 

Pabcd̂ = 2B cab
    d −

1

2n
[racδb

d − rbcδa
d]. 

6) "Put i = â, j = b̂, " k = c,  and  l = d" 

"Pâb̂cd = Râb̂cd −
1

2n
[râcgb̂d − rb̂cgâd]" 

Pâb̂cd = 4BhabBhdc −
1

2n
[rc

aδd
b − rc

bδd
a ]. 

7) "Put i = â, j = b, k = ĉ,  and l = d" 

"Pâbĉd = Râbĉd −
1

2n
[râĉgbd − rbĉgâd]" 

Pâbĉd = 4BcahBdbh − Abd
ac − 2BachBhbd −

1

2n
[0 − rb

cδd
a ] 

Pâbĉd = 4BcahBdbh − Abd
ac − 2BachBhbd +

1

2n
[rb

c δd
a ]. 

8) "Put i = a, j = b̂,  k = c,  and  l = d̂" 

"Pab̂cd̂ = Rab̂cd̂ −
1

2n
[racgb̂d̂ − rb̂cgad̂]" 

Pab̂cd = 4BdbhBcah − Aac
bd − 2BbdhBhac −

1

2n
[0 − rc

bδa
d] 

Pab̂cd̂ = 4BdbhBcah − Aac
bd − 2BbdhBhac +

1

2n
[rb

cδd
a ]. 

 

Theorem3.6 

Let the manifold M of Projective tensor of  (AK-manifold),and  M has J-invariant Recci tensor, 

Then M is a holomorphic sectional. 
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Proof: 

Assume M is (AK-manifold), then 

By theorem(3.5), we have 

4BcahBdbh − Abd
ac − 2BachBhbd +

1

2n
[rb

c δd
a ] 

4(
1

2
(BcahBdbh+BachBdbh) − Abd

ac − 2(
1

2
(BachBhbd+(BcahBhbd) +

1

2n
[rb

cδd
a ] 

4(
1

2
(BcahBdbh−BcahBdbh) − Abd

ac − (BachBhbd−(BachBhbd) +
1

2n
[rb

c δd
a] = 0 

Since M has Ĵ-invariant Rɨcci, then 
1

2n
[rb

cδd
a ] = 0 

−Abd
ac =0⇔ Abd

ac =0 

Hence, M is a flat holomorphic sectional. 

 

Theorem3.7 

Assume M is a manifold of Almost Kahlar ,"then M has" J-invaiant "Ricci tensor", 

"Proof:" 

"Suppose that M is" (AK-"manifold), then" 

By theorem(3.5), we have 

4BcahBdbh − Abd
ac − 2BachBhbd +

1

2n
[rb

c δd
a ] 

By theorem(3.6), we have 

Abd
ac =0 

Hence 

4BcahBdbh − 2BachBhbd +
1

2n
[rb

cδd
a ] = 0 

contracting through the index (a,h), we deduce 
1

2n
[rb

cδd
a ] = 0 

1

2(2n)
(rb

cδd
a −rd

aδb
c ) = 0 

contracting through the index (a,d), we have 
1

4n
(rb

cδa
a−ra

aδb
c ) = 0 

1

4n
(nrb

c−ra
aδb

c ) = 0 

Antisymmetrizing and symmetries by the indices (a,c) we obtain                         

 
1

4
(rb

c) = 0 ⇒rb
c = 0 

Therefore  M has a J-invariant Ricci tensor. 

 

Theorem3.8 

Let M be a manifold of Almost Kahlar, Then M is Kahler 

Proof: 

Assume M is (AK-manifold), then 

By theorem(3.5), we have 
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4BhabBhdc −
1

2n
[rc

aδd
b − rc

bδd
a ] 

Symmetries and Antisymmetrizing "by the indices" "(c,b)" and (c,a) "we obtain" 

4BhabBhdc = 0 

contracting through "the indices (a,d) , (b,c)", we have: 

4BhabBhab⇒"BhabBhab = 0" 

BhabB̅hab = 0 ⇒ ∑ "|Bhab|
2

= 0 ⇔ Bhab = 0
a,b,h

" 

By Proposition (3,4) we have 

Hence M is Kahler manifold. 

 

Theorem 3.9 

Let M be a manifold of Almost Kahlar, then M is a Locally conformal Kahler manifold (LCK-

manifold). 

Proof: 

Suppose that M is (AK-manifold), then 

By theorem (3.5), we have 

4BhabBhdc −
1

2n
[rc

aδd
b − rc

bδd
a ] 

Symmetries and Anti symmetrizing by the indices (c, b) and (c, a) we obtain 

4BhabBhdc = 0 

contracting through the indexes (d,a) and (c,b), we get: 

4BhdcBhdc⇒BhdcBhdc = 0 

Hence 

BhdcBhdc = 0 ⇒ B̅hdcBhdc = 0 ⇒ ∑ |Bhdc|2 = 0 ⇔ Bhdc = 0
h,d,c

 

Hence M is a Locally conformal Kahler. 

 

Conclusions 

1- Studied some  components Projective of Almost Kahler. 

2- To prove that the manifold M is a flat holomorphic sectional tensor of projective Almost 

Kahlar manifold. 

3- To prove that the manifold M has J-invariant Ricci tensor. 

4- proved that (AK-manifold) M is kahler manifold. 

5- There exists relation between  Almost Kahlar  manifold (AK-manifold) and Lacally 

confermal Kahler manifold (LCK-manifeld). 
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 منطوي كوهلر التقريبي للتنزر الاسقاطي
احمد عبد     يعبد الهاد   

 مديرية تربية صلاح الدين 

 معلومات البحث:   الخلاصة:

الاسقاطي ر التوافقي للتنزالعمل من هذا البحث هو تحليل الخصائص الهندسية 

الانحناء الإسقاطي  نزرتنستخدم خصائص تسطيح نحن . لمنطوي كوهلر التقريبي

كما  المنطوي، المركبات لهذا. تم ايجاد بعض لتحديد مركبات منطوي كوهلر التقريبي

ان هذا المنطوي يمتلك وتم اثبات ، مسطحر مقطعي تنزهو تم برهان ان المنطوي 

واخيرا تم  ,منطوي كوهلر تم اثبات ان هذا المنطوي يمثلوايضا  ،الثابتريجي  تنزر

 .(Locally conformal Kahler)بين هذا المنطوي وبين منطوي  ايجاد علاقة
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 الكلمات المفتاحية:
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