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Fixed point theory is an intriguing topic with numerous applications in
several branches of mathematics. In addition, fixed point theory offers
useful methods for problem-solving that may be used across many
subfields of mathematical analysis. Fixed point theorems are concerned
with mappings f of a set X into itself that, under particular conditions,
permit a fixed point, that is, a point x € X such that f(x) = x. In this
paper, we use the triangle property on fuzzy normed space(Fn-space) to
show a common fixed point (CF-point) without continuity. First, we
review some of the fundamental terms used in the fuzzy context. After

Triangular property, that the notion of triangle fuzzy norm is given then we show that the self

and common fixed point. mappings I' and A have a CF-point in the setting of Fn-space.
. Additionally, certain applications of our main results to the Fredholm

Corresponding Author integral equation are investigated.
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Introduction

One of the most significant domains in present-day mathematics is functional analysis. It is
fundamental to the theory of differential equations, representation theory, probability, and
the investigation of a variety of distinctive properties of a variety of spaces. see[1-4].

Schweizer and Sklar [5] established the definition of a continuous triangular norm in
1960. Zadeh [6] then presented the notion of fuzzy sets in 1965 and numerous
mathematicians have studied this concept and obtained different main results from various
points of view. Authors in [7] produced the fuzzy metric space using the idea of fuzziness and
the continuous t-norm. There have been numerous works published about fuzzy metric
spaces; for examples, see references [8-11]. In a linear space, Katsaras introduced the fuzzy
norm in 1984. Numerous studies have been conducted on Fn-spaces; see [12-16].

On the other hand, fixed point theory provides a straightforward, effective, and practical
method for nonlinear analysis. Additionally, it has beneficial applications in the disciplines of
mathematics and other sciences (see [17-20]). As a consequence, this theory has drawn a
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significant number of researchers who are leading the theory's development in a variety of
fields.

In this paper, we employ the triangle property on fuzzy norms to show a CF-point in the
context of Fn-space. In addition, certain applications of our key conclusions to the Fredholm
integral equation are studied. Structurally, this paper involves the following: we begin with
the fundamental terms utilized in the fuzzy context and the definition of fuzzy normed space.
after that, we introduce the fuzzy norm's triangle property. This property is used to prove a
CF-point theorem for contractive mappings in a Fn-space. In addition, we examine the
existence and unique solution to Fredholm integral. Finally, the paper finished with a
conclusion section.

Preliminaries

In this part, we will go over certain terminology and results that will be used throughout
the rest of the research. To begin, let's review some of the fundamental terms utilized in the
fuzzy context.

Definition 1[5]. A binary operation ®: [0,1] X [0,1] = [0, 1] is called t-norm if it fulfills
the requirements below for all ¢,7,t,¢ € [0,1],

D1 ®r=r,

(r®¢=¢®r,

(i)r®(E®¢) =r®L O¢

(iv)ifr<¢andt <sthentr ®t<¢®s.

Definition 2 [21]. Let L be a non-empty vector space over the field F (C or R). A Fn-space
is represented by the triplet (L, N,®), where ® is a continuous t-norm and N signify a fuzzy
set on L X R fulfilling the requirements for each x, y €L:

(1)N(x,0) =0,

(2) N(x,7) =1,Vr > 0ifand only ifx = 0,

(3) N(rx,7) = N(x,7/|r|), foreach0 #r e R, >0

4 N(x1) ®N(y,s) <Nx+y,T+5),Vr,s=0

(5) N(x,.)is left continuous for all x € L, and lim N(x1) = 1.

Definition 3[22]. Let (L, N,®) be a Fn-space. Then
(1) a sequence {p,} is termed as a convergent sequence if lim N(p, — p,7) = 1 for each
T—00

T > 0andp € L.
(2) a sequence {p,} is termed as a Cauchy if lim N(pnﬁ - pn,r) = 1; for each 7 > 0 and
n—oo

i=12, ..

Definition 4[22]. Let (L, N,®) be a Fn-space. Then (L, N,®) is termed as complete if every
Cauchy sequence in L is convergent in L.
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Main Results :
This section introduces the fuzzy norm’'s triangle property. This property is used to prove a CF-
point theorem for contractive mappings in a Fn-space.

A pointx € L is said to be a CF-point if a pair of self mappings (I', A) on L satisfy I'x, = AX = X,

Definition 5. Let (L, N, ®) be a Fn-space. A fuzzy norm N is called triangular if the condition
holds:

1 1 1
Nx—»,7) <N(x—z,r) ) <N(y—z,r) )
forevery x,4,z € Landt > 0.

Theorem 1. Suppose that (L, N, ®) is fuzzy Banach space and N is triangular. Let T',A: L — L
be self-mappings with

1 1 N(x—4.1)
- 1< _ _
N(I's—Ay,t) =4 (N(x—y,‘r) 1) +4; (N(x—Ay,Zr)@N(y—F&ZT) 1)

n ( N(x-Ix1)@®N(y—Ay,1) _ 1)
N(x—4,1)®N (x-Ay,2T) ®N(y—I'x,21)
1 1
+1s(=—— T Yo 1) (1)

forallx,y € L,t>0,A; € (0,1) and A,,A3,A4 = 0with A, + A, + A3+ 21, < 1.ThenT and A
have a CF-pointin L.
Proof: Fix x. € L and generate a sequence of pointsin L,

X2j+1 :rXZj
X2j+2 = AX2j+1 , J=20

Then,
! 1 ! 1
N(X2j+1 — X2j+2) T) N(FX2j — AX2j41) T)
1 N(X2 j—X2 '+1:T)
(1) s ()
1 N(xzj—%2j+1,T) T4z N(x2j—A%2j41,2T) ON (X2 j41—T%2,2T)

N(x2j — %2, 7) ® N(xgj41 — AX2j41,T) B 1)
N(XZ} X2]+1:T) ® N(ij AX.2j+1: ZT) ® N(X2j+1 - FXZj:ZT)

N(xzj—%2j41,7)
- 1)y (e M )
1 (ij X2j+1,T) 2 N(x2j=%2j+2,2T) ON (%241 —X2j4+1,2T)
N(Xz; X2j+1s T) ® N(X-2j+1 — X2j+2 T) _ 1)
N(xz; — X2]+1; 7) ® N(xzj — X242, 27) @ N(xj41 — X241, 27)

1
— -1+ = -1
(N(ij erpf) N(X2]+1 AX2j+1'T) )

1
14— _1>
(N(ij X21+1;T) N(X2]+1 XZj+2:T)
N(x2j=%2j4+1,T) N(xz2j=%z2j+2,T)
(e )y (o) 1) (o)
1 N(xzj—%zj+1,7) 2 N(xzj—%2j+2,2T) 3 N(xzj41—%2j+2:2T)

1 1

+A,| = —14+= -1
4<N(ij - X2j+1;T) N(X2]+1 X2j+2:T) )
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Since N(xzj — X242 ZT) = ]V(xzj — x2j+1,r) ® N(ij+1 - X2j+2,T) for t > 0, we have further
1

1
~ —-1< | = -1
N(X2j+1 —X2j+2'T) 1<N(X.2j - X.2j+1,T) >
+/12<~ N(XZj—XEjH:T) _1>
N(ij — X2j+1» T) ® N(X2j+1 — X2j+2 T)
iy (M) )

N(X2j+1 —ij'T)®N(ij —ij+2,‘[)

1 1

+A, < = -1+= - 1)
N(ij —X2j+1»T) N(X21+1 X2j+2,T)
Following simplification, we arrive at:

! —1319(..;—1) (2)

N(x2jr1—X2j+2.T) N(x2j=%2j+1,7)

where 8 = Al*j—ﬂ‘* <1, since Ay Ay Ay = O with A, + Ay + Ay + 21, < 1
- A2
Similarly,
1 1
— —1== -1
N(X2j+2 — X2j+3» T) N(FX2j+1 - AX2j+2,T)
N(Xzj+1—%2j4+2T)
(i 1) e R )
! N(xzj+1-%zj+2.T) Az N(Xzj41~4%2j4+2,2T) ON (X 42~ TXzj41,2T)

N(X21+1 FX2j+1,T) ® N(ij+2 - AX2j+2,T) _ 1)
N(X21+1 X21+2»T) ® N(X.21+1 AXzj12, ZT) ® N(X.2j+2 - FX2j+1,2T)

-1 )+/1 ( N(X2j+1—x~2j+2’7) _ )
1 (X21+1 X~21+27) z ﬁ("~2j+1—X2j+3v2'f)®ﬁ(x~2j+2—X‘2j+2’21')

N(X2]+1 X2j+2:T) ® N(X.Zj+2 - ij+3,T) _ 1)
(X2]+1 X2]+2’T) ® N(X21+1 X2j+3 ZT) ® N(X.zj+2 — X2j+2 ZT)

1
= -1+ = -1
(N(X2]+1 FX2]+1;T) N(X.zj+2 _AX2j+2:T) >

( 14 1>

N(X2]+1 X2]+2;T) N(X21+2 X21+3,T)

=1 ( 1 _ 1) +2 ( N(X21+1 X21+2,T) _ 1) + 1 ( N(X2j+1—x~2j+3:‘f) _ 1)
1 N(xzj+1=%2j+2T) z N(xzj+1—%2j+3.27) 3 N(xzj+2—%2j+3.27)

1
[ = —1+= -1
! ( N(ij+1 - X2j+2;T) N(X21+2 X2j+3:T) >

Since N(X2j+1 — X2j+3) ZT) > N(X2j+1 - X2j+2:T) ® N(X2j+2 - XZj+3'T) for © >0, we have
further

1

1
— 1< 44| =
N(X2j+z —X2j+3:T) 1(1\/(X.2]'+1

- X.2j+2,T) 1)
( N(X.2j+1 - X.2j+2»T) _ 1)
N(X.21+1 X2j+2 T) ® N(X.21+2 X.2j+3,T)
+13 ( N(X21+1 X2j+3» T) 1)

N(x2j+2~%2j+1T)ON (Xzj41~X2j43,T)

1
-1+ = -1
(N(X2]+1 X2]+2:T) N(X.2]+2 X'2j+3'T) >

Following simplification, we arrive at:
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1
N(X2j+2—ij+3rT)

fort > 0 whered =

—199(; 1) 03

N(X2j+1—X2j+2rT) B

LT < 1, since Az Az, Ag 2 O with Ay + Ay + Ay + 24, <1
- A2T A4

Now, by induction and using (2) and (3), we obtain
1

1
— —-1<9| = -1
N(X2j+2 - X2j+3'T) ( N(X.2j+1 — X2j+2) T) >

< 92

1
< — -1
<N(X2j - X2j+1'T) >

< 922 ( 1 1)
N(X" — X1 T)
Accordingly,

]lirg N(x2j+1 - x2j+2,r) =1, fort>0. ..(4)

Because N is triangular, it follows that we may conclude,
1

1 1
=~ 1<|= -1)+|= -1
N(%; =% 7) <N(xj ~Xj41,7) ) <N(Xj+1 — Xj42,T) )

1
t (N(Xk—l — Xj, T) - 1>

. . 1
< (99 4 091 4 4 951 <~—_ 1>
N(XP_X‘LT)
9J 1 .
< 1_19].(1?’(}{0_}{15) — 1) -0asj—>0

Consequently {X;} is cauchy sequence in L.

Now because L is complete, then y, € L exists with
lim N(xzjﬂ — yl,r) =1, fort>0. ..(5)
j—oo

Now, to show that Ay, = y;.

1 1 1
— 1< |- —
N(y,1—-4y4,7) 1< (ﬁ(%l—XZjﬂrT) 1) + (N(X2j+1_A%1'T) 1) (6]
fort > 0.By (1), (4), and (5) we have,
1 1

= —1)==
(N(X2j+1 - A?f’pT) > N(szj - A%LT)

1
<Al = -1
1<N(X2j—%1'f) >

N(Xz '—@LT)
+1 (~ ] — — 1)
2 N(XZI'_A@LZT)@NQM—FX2j'2T)

+ ( IV(ij—Fij,‘c)@IV(@,q—A@/’pT) _ )
3\ N(xzj=41.7) ON (xzj~A41,27) ON (41 —I'x2,27)

1
+A,.| = -1+ = -1
4<N(X2j _FX.Zj:T) N(yq, — Ay, 7) )
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1
\N(xg) — #1,7)
+/12 < N(ij—ylff) 1)

N(x2j—A%1,27) ON (g1 —-%2j41,2T) N
+ ( N(x2j=%2j4+1,7) ON(g1-Ay1,7) _ )
3 N(ij—’y»b‘f)@N(ij—A%1,2T)@N(%1—X'zj+1'27)

1
+a<~ 14 —1)
! N(ij - X2j+1,T) N(y, — Ay, 7)
Since N(xp; — Ay, 27) = N(xz; — 41,7) ® N(yy — Ayy,T) for T > 0 then

1 > 1
(N(X2j+1 — Ay, T) N(X.zj — Y1 T)
N(X«Z '—@LT)
A < — — J _ _ 1)
+ 2 N(XZj_%er)@DN(yl—Ayer)(’aN(y»l—xsz,Zr)
+ ( N(x2j—%2j+1,T) ON (g1 —Ay1,7) _ 1)
3 N(x2j—41,7) ®ON(x2j—91,7) ON (41— Ay 1, D ON (g1 —%j41,27)

1 1
+a<~ S _1)
* N(XZj - X‘2j+1'T) N(yy, — Ayq,T)

- (A + Ag) (z—

N(y1—Ayq1,7) a 1) asj — e

Then,

1
l_imsup(~ —1>S(/1 + A) (= -1)
]z N(X2j+1 - /1’.%1,‘[) 2 ! N(y, — Ay, T)
By (5) and (6) obtain
- D<A +)(=

(= -1
N(y, — Ayy,7) N(y, — Ayy,7)
Note thatlz + /14, < 1 because 12,13,14 =0 with Al + Az + 13 + ZA4 <1 Then,
Ny, — Ay, 1) =1
Therefore Ay, = 4. Likewise, we can show that 'y, = y;.

Since N is triangular,

1 1 1
——— — < - _
N(y1-T'y1,7) 1= (ﬁ(yl—xzj_,_z,‘r) 1) T (ﬁ(xﬁﬂ_,—%;) 1) -(7)
By (1),(4), and (5) for T > 0,
1

(e~ = (e 1)
N(X21'+2—F’9‘1,T) ﬁ(r’y»l—AXZjH'T)

1
<Al = -1
! <N(%1 - XZj+1:T) >

+1, ( N1 2% 417) 1)

N(y4 ~A%2j41,2T) ON (x2j41-T%1,2T)
NQM—F@LT)@ﬁ(ijH—AX2j+1'T) _ )
N(y1—%2j4+1.7) ON(41-4%2j41,2T) ON (X 41 —T'%1,27)

+A, (

1 1
+4 < = —-1+= - 1)
' N(”z/’1 - F’yal,'l') N(X.2j+1 - AX‘2j+1;T)

1
=14 = -1
! <N(%1 - X'2j+1'T) >
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N(%1 —X2 '+1:T)
+1 ( — = - 1)
2 N(y1 —X2j+2r2T)@N(X~zj+1—Fih,ZT)

) ( N(y1-Ty1,0)ON(Xzj11-X2j12.T) _ )
3 N(g1-%2j4+17) ON(91-%242,2T) ON (X241 -T'%1,27)

1
+1 <~ —1+= —1)
"\ N(y1 — 'y, 7) N(X2j+1—X2j+2,T)

Since N(X2j+1 — 'y, ZT) 2 N(ijﬂ - %pT) ® N(y, — I'yy,7) then,

: )
(N(X2j+2 —TI'y,, T) N(%1 — X2j+1s T)
ﬁ(@l —X2 '+1rT)
R,
t4 N(y4 —X2j+2r2T)@N(X~zj+1—ylff)(@N(y»l—F’éh.'f)
n ( N(y1-Ty1,D)ON (X2 j41—%2j42,T) _ )
3 N(@h —X2j+1'T)®N(%1 —X2j+2'27)®N(X2j+1—%1'7)@N(%1—F%1,T)

1
i ——— )
! N(yy —T'yq,7) N(ij+1 _X2j+2'T)

= (A + 1)

N(y1-T'y1,0) a 1) asj ==

Then,

1
l,imsup(~ —1>S(/1 + A) (= -1)
Jo N(XZj+2 —I'y,, T) ? * N(%l - F@lrr)
By (7) and (5) obtain

— -1 <A, +)(= —
(N(’y)1—F’y)1:T) )=t 4)(N(fy1—ny1,T)

Note that 1, + 14, < 1 because Ay, Az, Ay = 0with Ay + A, + A3 + 244 < 1. Then,
N(y,—Ty,,1) =1
Therefore 'y, = y,. Consequently, 4, is a CF-point of I' and A.

D

Example 1. Let ® be a binary operation specified by u® o = o ® u,Vu,0 € [0,1].
Consider fuzzy norm N: Y x (0,00) — [0,1] represented in the following way:

T

N7 =
Let,A: Y — Y specified by

forall x € Y and t > 0 where||x|| = [x(t)]

2 L ifreod]
—+— ifx ,
re(t) ={,> 10
T+3 if x € (1,0)
2 1
Y ifyeloa]
_ 5 10
7+7 if’y»E (1,00)
Let x,4 €Y, we have
1 _ Inx(©)-2y(0)

N(Tx(©)-Ag(),1) T

T

257



<2 x(8)—y(s)
5 T
2 1
=5 Gao—son Y
Thus, the operators I' and A meet the requirements of Theorem 1 with 4, = % € (0,1) and

A, = A3 = A, =0in(1). Then T and A have a CF-pointinY

Corollary 1: Assume that (L, N, ®) is a fuzzy Banach space and N is triangular. Let ', A: L — L
be a self-mapping with

1 1 N(x-4,7)
. — —
N(rx—Ay,7) 1< (ﬁ(x—y,r) 1) + 42 ( N(x—Ay,27) ®N(y—TIx,27) 1)

1 1
A ( Noren Lt g 1)
forallx,4 € L, 7> 0,1, € (0,1) and A,,A, = 0 with A; + A, + 24, < 1. Then I" and A possess
a unique CF-point in L.

Proof: y, is a CF-point of I' and A such that 'y, = Ay, = ¢, as shown by the Theorem 1
proof. For uniqueness, let X, be another CF-point of I' and A in L such that I'x; = Ax; = X;.
Then,

1 1
_——1 == -1
N(x; — %1, 7) NIy — Ayy,T)

1 N(x1—41,7)
< _— _
=h ( N(x1—41.7) 1) + 12 ( N(x1—A41,2T)®ON(y1—Tx1,27) 1)

1 1
+A4<N(X.1 —I'xq,7) b N(y)l — Ayy,T) 1>
Since N(y1 — I'x1,27) 2 N(yy —x1,7) ® N(xy = I'xy,7)
=Ny, —x,7) ®1
=N(?f’1 — X1, T)
and
N(xy — A41,27) 2 N(xq — %1, 7) ® Ny, — Ay, 1)
= N(x, —41,7T)®1
:N(Xl — Y1, T)
Consequently,

1 1 N(xq —41,T)
- < - —
N(%1—%1.7) 1 = Al ( N(x1—91,7) 1) + /12 ( N(x1—¢1,D)®ON(y1-x4,7) 1)

1 1
4<N(X-1 _aniT) N('Lf”’l_/y'l"l—) >
=+ 1) (———=—1)

N(x1—-91,7)

:(/11"‘/12)(; 1)

N(Ixy—Ayq,7)

S(Al+)lz)2(;—1)

N(x1—%1,7)
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; 1
< (i +4,)7 (N(xl—yl,r) B 1)
-0 asj— oo

since A, + A, < 1, therefore N(x; — 11,7) = 1. Hence x; = 4, fort > 0.

Applications:

As an application of Theorem 1, we examine the existence and unique solution to Fredholm
integral equations in this section. Consider the space Y = C([0, a], R) which represents the
space of all real-valued continuous functions on the interval [0, a], where 0 < a € R.

The Fredholm integral equations are

x(t) = [ fi(t, 6,%(s)) ds (8)

x(t) = [ f2(t,5,%(5)) ds

where t € [0,a] and f:[0,a] X [0,a] X R — R. The binary operation ® is specified by u ®
0 = 0 ®uVu,o € [0,a]. The standard fuzzy norm N: Y X (0,00) — [0,1] represented in the
following way:

T
T+R(X)

N 1) = forall x € Y and t > 0 where X(x) = [|x|| = [x(t)].

Theorem 2: Suppose that

(i) there is a function h: [0, a] X [0, a] — [0, ©) which is continuous and A; € (0,1) such that
for all x, 4 € Y we have

IF1(t, 8,x(8)) — f2(t, 6, 4(8))| < A1 h(t, 8)|x(8) — % ()|

(i) f,'h(t, 8)d 5 < 1

Then equation(8) possesses a unique solution in Y.
Proof:
Let,A: Y — Y specified by

Tx(t) =j fl(t,é,x.(é))dé
0

Ax(t) =f fz(t,s,x,(s))dzs
0

Let x,4 €Y, we have
1 4 _ Irx©-Ag@)]
N(rx(t)—-Ay(t),7) - T
_ |f(;1f1(t,5,x(5))dé —f(?fz(t,é,y(s))ds |

- S 15(t8,%(8)) — (¢, 6,4.(8)) |ds

T
< Jo A1 h(t,8)|x(8)~(8) | ds

T
< 2, BN (e, ) ds

259



<2 1x(8) — 4 (8)|

T
1

=M Seo—so0 Y
Thus, the operators I' meet the requirements of Theorem 1 with A4; € (0,1) and A, = A3 =
A4 = 0in (1). Then I and A have a CF-pointin Y.

Conclusions

We introduce the triangle property on a fuzzy norm in this study and then use it to show
the CF-point theorems in Fn-space. In addition to the above, we extended our results to the
Fredholm equation to demonstrate the existence of an integral equation solution within the
framework of Fn- spaces. It is a fascinating open problem to discover solutions to other kinds
of equations on Fn-spaces.
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