Synthesis and Characterization of 1,3-Oxazepindion Derivatives via Diformylbenzene Imines as Precursors

Husham Adil* and Nabeel Y. J. Al-Hiti
1 Department of Chemistry, Education College for Pure Science, University of Anbar, Anbar, Iraq

Abstract

In this paper, 1,3-oxazepindione derivatives [D] and [E] were prepared by reacting Schiff bases di Azomethine [A], [B], and [C] with maleic anhydride and succinic anhydride in the presence of dried benzene as a solvent. Schiff bases di Azomethine [A], [B], and [C] were prepared by reacting Terephthalaldehyde, Isophthalaldehyde, or o-Phthalaldehyde with 5 drops of glacial acetic acid as a catalyst and halo-aniline derivatives in absolute ethanol as a solvent. The prepared compounds were diagnosed and confirmed by using infrared and nuclear magnetic resonance spectroscopies. All the reactions of the prepared compounds were monitored by TLC.

Keywords: 1,3-Oxazepine, Schiff bases, Imines, anhydride, aniline.

E-mail: hushamadil93@gmail.com
Mobile: 07827636793

Introduction:

Schiff bases were produced for the first time by the scientist Hugo Schiff in 1864 by thermal condensation between each of the ketones or aldehydes and the primary amine [1]. Schiff bases were distinguished by their biological activities against cancer [2], bacteria [3], and fungi [4]. Schiff bases had given other names, like Azomethine and Imine [1]. The term "heterocyclic compounds" refers to cyclic organic compounds that contain at least one different atom (or more) within the ring. And the most common different atoms found in the structure of heterocyclic rings are nitrogen, phosphorous, oxygen, and sulfur atoms [5]. The synthesis of heterocyclic rings is important due to their biological activities against bacteria, viruses, and inflammation. Some of these rings have been considered precursors for many important biological molecules [6]. For instance, vitamins, hemoglobin, chlorophyll, RNA, DNA, and numerous other compounds and Heterocyclic rings have further uses as insecticides and disinfectants [7]. Oxazepine derivatives are seven-member heterocyclic organic compounds that consist of a nitrogen atom, an oxygen atom, and five carbon atoms. Oxazepine derivatives are known for their high level of stability, due to the conjugation between the double bonds in the ring. There are three isomers of oxazepines: 1,4-oxazepine, 1,3-
oxazepine, and 1,2-oxazepine [8] [9]. Oxazepine derivatives are produced via a cyclo-addition reaction (2+5) between Schiff bases and cyclic anhydrides [10]. Oxazepine derivatives are active against bacteria [11], fungi [12], microbials [13], and tumors [14], according to previous studies and literature [15]. This paper seeks to synthesize Schiff Bases di Azomethine and use them as precursors for the preparation of new 1,3-oxazepindione derivatives.

EXPERIMENTAL PART

Materials:
Merck, Sigma-Aldrich, and Scharlau supplied all of the chemicals and solvents used in this study. Bruker Ascend™ 400 and Bruker Tensor 27 were used to record 13C-NMR, 1H-NMR, and FT-IR spectra. The Stuart SMP-10 equipment was used to determine melting point temperatures.

General Method for Preparing Schiff Bases di Azomethine (A$_1$-A$_3$) (B$_1$) (B$_2$) (C$_1$) (C$_2$):
In a 100-mL reaction flask containing 0.001 moles (2g) of Terephthalaldehyde, Isophthalaldehyde, or o-Phthalaldehyde in 20mL of hot absolute ethanol with 5 drops of glacial acetic acid. 0.002 moles of dissolved aniline substitutions in 30 mL of hot absolute ethanol were added. For 3–4 hours, the reaction mixture was left to reflux. The precipitate was filtered once the reaction's completion was verified, and recrystallized using absolute ethanol [1].

Characterizations of Schiff Bases di Azomethine (A$_1$-A$_3$) (B$_1$) (B$_2$) (C$_1$) (C$_2$):

[A$_1$] $1,1'$-((4-phenylene))bis(N-(4-chlorophenyl)methanimine): color yellow, state solid, yield 83%, M.p. 182-183°C, R_f = 0.62 (benzene: acetone) (9:1). FT-IR (v cm$^{-1}$): 3057cm$^{-1}$ (C-H Aromatic), 1615cm$^{-1}$ (C=N), 1581-1477cm$^{-1}$ (C=C Aromatic), 1HNMR (400MHz, CDCl$_3$): 8.48 (s, C$_H$=N), 8.00-7.18 (m, H Aromatic).

[A$_2$] $1,1'$-((4-phenylene)bis(N-(4-bromophenyl)methanimine): color yellow, state solid, yield 88%, M.p. 121-122°C, R_f= 0.6 (benzene: acetone) (9:1). FT-IR (v cm$^{-1}$): 3054cm$^{-1}$ (C-H Aromatic), 1611cm$^{-1}$ (C=N), 1562-1474cm$^{-1}$ (C=C Aromatic), 1HNMR (400MHz, DMSO-d$_6$): 8.73 (s, C$_H$=N), 8.09-7.28 (m, H Aromatic).

[A$_3$] $1,1'$-((3-phenylene))bis(N-(3-bromophenyl)methanimine): color greenish yellow, state solid, yield 91%, M.p. 178-179°C, R_f = 0.7 (benzene: acetone) (9:1). FT-IR (v cm$^{-1}$): 3048cm$^{-1}$ (C-H Aromatic), 1620cm$^{-1}$ (C=N), 1560-1467cm$^{-1}$ (C=C Aromatic), 1HNMR (400MHz, DMSO-d$_6$): 8.75 (s, C$_H$=N), 8.16-7.32 (m, H Aromatic).

[B$_1$] $1,1'$-((3-phenylene)bis(N-(4-chlorophenyl)methanimine): color yellow, state solid, yield 83%, M.p. 108-109°C, R_f = 0.63 (benzene: acetone) (9:1). FT-IR (v cm$^{-1}$): 3055cm$^{-1}$ (C-H Aromatic), 1621cm$^{-1}$ (C=N), 1577-1480cm$^{-1}$ (C=C Aromatic), 1HNMR (400MHz,
DMSO-d6): 8.74 (s, CH=N), 8.55-7.33 (m, H Aromatic). 13CNMR (400MHz, DMSO-d6): 161.38 (CH=N), 150.39-123.41 (C Aromatic).

$[^{B2}]$ 1,1’-(1,3-phenylene)bis(N-(4-bromophenyl) methanimine): color greenish white, state solid, yield 69%, M.p. 123-124°C, Rf = 0.6 (benzene: acetone) (9:1). FT-IR (v cm$^{-1}$): 3078 cm$^{-1}$ (C-H Aromatic), 1626 cm$^{-1}$ (C=N), 1577-1479 cm$^{-1}$ (C=C Aromatic), 1HNMR (400MHz, DMSO-d6): 8.74 (s, CH=N), 8.52-7.27 (m, H Aromatic). 13CNMR (400MHz, DMSO-d6): 161.43 (CH=N), 150.80-119.30 (C Aromatic).

$[^{C1}]$ 1,1’-(1,2-phenylene)bis(N-(4-chlorophenyl) methanimine) [16]: color yellow, state solid, yield 88%, M.p. 171-172°C, Rf = 0.73 (benzene: acetone) (9:1). FT-IR (v cm$^{-1}$): 3078 cm$^{-1}$ (C-H Aromatic), 1611 cm$^{-1}$ (C=N), 1587-1483 cm$^{-1}$ (C=C Aromatic), 1HNMR (400MHz, DMSO-d6): 8.08 (s, CH=N), 7.63-7.36 (m, H Aromatic). 13CNMR (400MHz, DMSO-d6): 153.47 (CH=N), 141.40-121.94 (C Aromatic).

$[^{C2}]$ 1,1’-(1,2-phenylene)bis(N-(4-bromophenyl) methanimine): color orange, state solid, yield 82%, M.p. 185-186°C, Rf = 0.7 (benzene: acetone) (9:1). FT-IR (v cm$^{-1}$): 3075 cm$^{-1}$ (C-H Aromatic), 1611 cm$^{-1}$ (C=N), 1576-1489 cm$^{-1}$ (C=C Aromatic), 1HNMR (400MHz, DMSO-d6): 8.01 (s, CH=N), 7.60-7.34 (m, H Aromatic). 13CNMR (400MHz, DMSO-d6): 149.99 (CH=N), 140.84-122.32 (C Aromatic).

General Method for Preparing 1,3-Oxazepindione derivatives:

In a 50-mL reaction flask containing 0.001 moles (0.5g) of Schiff Bases di Azomethine in 15mL of hot-dried benzene. 0.002 moles of dissolved cyclic anhydrides (maleic and succinic anhydrides) in 15 mL of hot dried benzene were added. For 5-6 hours, the reaction mixture was left to reflux and then stirred at room temperature for an additional hour. The precipitate was filtered, and it was then recrystallized using dried benzene [1].

Characterizations of 1,3-Oxazepindione derivatives (DA$_{1}$-DA$_{4}$) (DB$_{1}$) (DB$_{2}$) (DC$_{1}$) (DC$_{2}$):

$[^{DA_{1}}]$ 2,2’-(1,4-phenylene)bis(3-(4-chlorophenyl)-2,3-dihydro-1,3-oxazepine-4,7-dione): color pale yellow, state solid, yield 68%, M.p. 202-203°C, Rf = 0.58 (n-hexane: ethyl acetate) (6:4). FT-IR (v cm$^{-1}$): 3076 cm$^{-1}$ (C-H Aromatic), 3011 cm$^{-1}$ (C-H alkene), 1701 cm$^{-1}$ (C=0 lactone), 1628 cm$^{-1}$ (C=0 lactam), 1522-1490 cm$^{-1}$ (C=C Aromatic), 1HNMR (400MHz, DMSO-d6): 10.48 (s, O-CH-N), 7.66-7.37 (m, H aromatic), 6.48-6.30 (m, CH=CH), 13CNMR (400MHz, DMSO-d6): 167.37 (CO-O), 163.80 (CO-N), 138.08-129.20 (C aromatic), 130.65-127.79 (CH=CH), 121.43 (O-CH-N).

$[^{DA_{2}}]$ 2,2’-(1,4-phenylene)bis(3-(4-bromophenyl)-2,3-dihydro-1,3-oxazepine-4,7-dione): color pale yellow, state solid, yield 69%, M.p. 200-201°C, Rf = 0.55 (n-hexane: ethyl acetate) (6:4). FT-IR (v cm$^{-1}$): 3082 cm$^{-1}$ (C-H Aromatic), 3051 cm$^{-1}$ (C-H alkene), 1702 cm$^{-1}$ (C=0 lactone), 1626 cm$^{-1}$ (C=0 lactam), 1504-1483 cm$^{-1}$ (C=C Aromatic), 1HNMR (400MHz, DMSO-d6): 10.47 (s, O-CH-N), 7.61-7.49 (m, H aromatic), 6.48-6.30 (m, CH=CH), 13CNMR (400MHz, DMSO-d6): 167.37 (CO-O), 163.82 (CO-N), 138.51-129.20 (C aromatic), 130.65-122.05 (CH=CH), 115.84 (O-CH-N).
[DA] 2,2′-(1,4-phenylene)bis(3-(3-bromophenyl)-2,3-dihydro-1,3-oxazepine-4,7-dione): color pale green, state solid, yield 63%, M.p. 199-200°C, \(R_f = 0.66 \) (n-hexane: ethyl acetate) (6:4). FT-IR (v cm\(^{-1}\)): 3079 cm\(^{-1}\) (C-H Aromatic), 3050 cm\(^{-1}\) (C-H alkene), 1712 cm\(^{-1}\) (C=O lactone), 1631 cm\(^{-1}\) (C=O lactam), 1530-1498 cm\(^{-1}\) (C=C Aromatic), \(^{1}\)HNMR (400MHz, DMSO-d6): 10.48 (s, O-CH=N), 7.98-7.26 (m, H aromatic), 6.48-6.31 (m, CH=CH), \(^{13}\)CNMR (400MHz, DMSO-d6): 167.38 (C=O), 164.01 (C=O-N), 140.75-126.76 (C aromatic), 130.59-122.15 (CH=CH), 118.62 (O-CH=N).

[DB] 2,2′-(1,3-phenylene)bis(3-(4-chlorophenyl)-2,3-dihydro-1,3-oxazepine-4,7-dione): color pale yellow, state solid, yield 64%, M.p. 206-207°C, \(R_f = 0.6 \) (n-hexane: ethyl acetate) (6:4). FT-IR (v cm\(^{-1}\)): 3078 cm\(^{-1}\) (C-H Aromatic), 3055 cm\(^{-1}\) (C-H alkene), 1702 cm\(^{-1}\) (C=O lactone), 1626 cm\(^{-1}\) (C=O lactam), 1515-1485 cm\(^{-1}\) (C=C Aromatic), \(^{1}\)HNMR (400MHz, DMSO-d6): 10.47 (s, O-CH=N), 7.67-7.37 (m, H aromatic), 6.48-6.30 (m, CH=CH), \(^{13}\)CNMR (400MHz, DMSO-d6): 167.36 (C=O), 163.81 (C=O-N), 138.08-129.19 (C aromatic), 130.64-127.80 (CH=CH), 121.44 (O-CH=N).

[DC] 2,2′-(1,2-phenylene)bis(3-(4-chlorophenyl)-2,3-dihydro-1,3-oxazepine-4,7-dione): color pale yellow, state solid, yield 65%, M.p. 209-210°C, \(R_f = 0.56 \) (n-hexane: ethyl acetate) (6:4). FT-IR (v cm\(^{-1}\)): 3080 cm\(^{-1}\) (C-H Aromatic), 3052 cm\(^{-1}\) (C-H alkene), 1703 cm\(^{-1}\) (C=O lactone), 1626 cm\(^{-1}\) (C=O lactam), 1504-1484 cm\(^{-1}\) (C=C Aromatic), \(^{1}\)HNMR (400MHz, DMSO-d6): 10.48 (s, O-CH=N), 7.67-7.07 (m, H aromatic), 6.49-6.30 (m, CH=CH), \(^{13}\)CNMR (400MHz, DMSO-d6): 167.37 (C=O), 163.83 (C=O-N), 138.50-129.33 (C aromatic), 130.65-122.05 (CH=CH), 115.85 (O-CH=N).

Characterizations of 1,3-Oxazepindion derivatives (EA1-EA3) (EB1) (EB2) (EC1) (EC2):

[EA1] 2,2′-(1,4-phenylene)bis(3-(4-chlorophenyl)-1,3-oxazepane-4,7-dione): color off-white, state solid, yield 68%, M.p. 172-173°C, \(R_f = 0.54 \) (n-hexane: ethyl acetate) (6:4). FT-IR (v cm\(^{-1}\)): 3046 cm\(^{-1}\) (C-H Aromatic), 2965-2842 cm\(^{-1}\) (C-H aliphatic), 1693 cm\(^{-1}\) (C=O lactone), 1656 cm\(^{-1}\) (C=O lactam), 1593-1527 cm\(^{-1}\) (C=C Aromatic), \(^{1}\)HNMR (400MHz, DMSO-
[EA2] 2,2’-(1,4-phenylene)bis(3-(4-bromophenyl)-1,3-oxazepane-4,7-dione): color pale yellow, state solid, yield 71%, M.p. 198-199°C, Rf = 0.51 (n-hexane: ethyl acetate) (6:4). FT-IR (ν cm⁻¹): 3080cm⁻¹ (C=O aromatic), 2980-2872cm⁻¹ (C-H aliphatic), 1661cm⁻¹ (C=O lactone), 1563-1503cm⁻¹ (C=C Aromatic), 1HNMR (400MHz, DMSO-d6): 10.10 (s, O=C aromatic), 8.09-7.30 (m, C aromatic), 2.50-2.41 (m, CH₂-CH₂), 1CNMR (400MHz, DMSO-d6): 174.27 (C=O-O), 170.73 (C=O-N), 138.71-123.46 (C aromatic), 31.49-29.17 (CH₂-CH₂), 120.86 (O-CH-N).

[EA3] 2,2’-(1,4-phenylene)bis(3-(4-bromophenyl)-1,3-oxazepane-4,7-dione): color pale yellow, state solid, yield 66%, M.p. 164-165°C, Rf = 0.64 (n-hexane: ethyl acetate) (6:4). FT-IR (ν cm⁻¹): 3061cm⁻¹ (C=O aromatic), 2959-2874cm⁻¹ (C-H aliphatic), 1666cm⁻¹ (C=O lactone), 1583-1529cm⁻¹ (C=C Aromatic), 1HNMR (400MHz, DMSO-d6): 10.10 (s, O-CH-N), 8.09-7.24 (m, C aromatic), 2.57-2.50 (m, CH₂-CH₂), 1CNMR (400MHz, DMSO-d6): 172.43 (C=O-O), 170.99 (C=O-N), 138.83-123.84 (C aromatic), 31.51-29.11 (CH₂-CH₂), 118.06 (O-CH-N).

[EB1] 2,2’-(1,3-phenylene)bis(3-(4-chlorophenyl)-1,3-oxazepane-4,7-dione): color white, state solid, yield 67%, M.p. 160-165°C, Rf = 0.55 (n-hexane: ethyl acetate) (6:4). FT-IR (ν cm⁻¹): 3045cm⁻¹ (C=O aromatic), 2936-2840cm⁻¹ (C-H aliphatic), 1693cm⁻¹ (C=O lactone), 1562-1529cm⁻¹ (C=C Aromatic), 1HNMR (400MHz, DMSO-d6): 10.10 (s, O-CH-N), 7.63-7.32 (m, C aromatic), 2.58-2.52 (m, CH₂-CH₂), 1CNMR (400MHz, DMSO-d6): 174.26 (C=O-O), 170.73 (C=O-N), 138.71-126.88 (C aromatic), 31.49-29.16 (CH₂-CH₂), 120.86 (O-CH-N).

[EB2] 2,2’-(1,3-phenylene)bis(3-(4-chlorophenyl)-1,3-oxazepane-4,7-dione): color white, state solid, yield 66%, M.p. 191-192°C, Rf = 0.54 (n-hexane: ethyl acetate) (6:4). FT-IR (ν cm⁻¹): 3068cm⁻¹ (C=O aromatic), 2972-2870cm⁻¹ (C-H aliphatic), 1695cm⁻¹ (C=O lactone), 1565cm⁻¹ (C=O lactam), 1593-1527cm⁻¹ (C=C Aromatic), 1HNMR (400MHz, DMSO-d6): 10.10 (s, O-CH-N), 7.64-7.37 (m, C aromatic), 2.58-2.53 (m, CH₂-CH₂), 1CNMR (400MHz, DMSO-d6): 174.25 (C=O-O), 170.76 (C=O-N), 139.12-121.26 (C aromatic), 31.52-29.15 (CH₂-CH₂), 114.88 (O-CH-N).

[EC1] 2,2’-(1,2-phenylene)bis(3-(4-chlorophenyl)-1,3-oxazepane-4,7-dione): color Pale yellow, state solid, yield 63%, M.p. 150-151°C, Rf = 0.58 (n-hexane: ethyl acetate) (6:4). FT-IR (ν cm⁻¹): 3027cm⁻¹ (C=O aromatic), 2980-2868cm⁻¹ (C-H aliphatic), 1685cm⁻¹ (C=O lactone), 1655cm⁻¹ (C=O lactam), 1560-1506cm⁻¹ (C=C Aromatic), 1HNMR (400MHz, DMSO-d6): 10.11 (s, O-CH-N), 7.62-7.33 (m, C aromatic), 2.60-2.55 (m, CH₂-CH₂), 1CNMR (400MHz, DMSO-d6): 174.09 (C=O-O), 170.74 (C=O-N), 138.12-122.03 (C aromatic), 31.45-29.20 (CH₂-CH₂), 120.85 (O-CH-N).

[EC2] 2,2’-(1,2-phenylene)bis(3-(4-bromophenyl)-1,3-oxazepane-4,7-dione): color off-white, state solid, yield 64%, M.p. 162-163°C, Rf = 0.57 (n-hexane: ethyl acetate) (6:4). FT-IR (ν cm⁻¹): 3028cm⁻¹ (C=O aromatic), 2978-2869cm⁻¹ (C-H aliphatic), 1689cm⁻¹ (C=O lactone), 1655cm⁻¹ (C=O lactam), 1560-1506cm⁻¹ (C=C Aromatic), 1HNMR (400MHz, DMSO-d6): 10.11 (s, O-CH-N), 7.62-7.33 (m, C aromatic), 2.60-2.55 (m, CH₂-CH₂), 1CNMR (400MHz, DMSO-d6): 174.09 (C=O-O), 170.74 (C=O-N), 138.12-122.03 (C aromatic), 31.45-29.20 (CH₂-CH₂), 120.85 (O-CH-N).
RESULTS AND DISCUSSION

Schiff Bases di Azomethine (A₁-A₃) (B₁) (B₂) (C₁) (C₂) were prepared by thermal condensation between Terephthalaldehyde, Isophthalaldehyde, or o-Phthalaldehyde and aromatic amines (halo aniline) with 5 drops of glacial acetic acid and use absolute ethanol as a solvent. Scheme 1 shows the paths for preparing Schiff Bases di Azomethine, and Scheme 2 shows the mechanism of reaction for the preparation of Schiff Bases di Azomethine [10].

All FT-IR spectra for synthesized Schiff Bases di Azomethine showed the disappearance of the absorption bands of the (C=O) group in aldehydes and the (-NH₂) group in amines and the appearance of the absorption bands of the (C-H) aromatic at (3078–3048 cm⁻¹), Azomethine groups (C=N) at (1617–1612 cm⁻¹), and (C=C) aromatic at (1587–1467 cm⁻¹) [17] [18]. Figure 1 shows FT-IR spectra for [A₂] compound.

All ¹H-NMR spectra of the synthesized Schiff Bases di Azomethine showed signals of (N=C-H) (2H, s) at (δ=8.75-8.01ppm) and aromatic protons (12H, m) at (δ=8.55-7.18ppm) [19]. Figure 2 shows ¹H-NMR spectra for [A₁] compound.

All ¹³C-NMR spectra of the synthesized Schiff Bases di Azomethine showed signals of (O=C-O) (2C) at (δ=174.27-167.36ppm), (O=C-N) (2C) at (δ=170.99-163.80ppm), aromatic carbons (18C) at (δ=159.12-140.75ppm), (N=C-H-O) (2C) at (δ=121.44-114.87ppm), (C=O) lactone, 1588-1524 cm⁻¹ (C=C Aromatic), ¹HNMR (400MHz, DMSO-d6): 7.57-7.37 (m, H aromatic), 2.58-2.53 (m, CH₂-CH₂), ¹³CNMR (400MHz, DMSO-d6): 174.25 (C=O–O), 170.76 (CO–O), 139.12-121.28 (C aromatic), 31.51-29.15 (CH₂-CH₂), 114.87 (O–CH–N).
(CH₂=CH₂) (4C) at (δ=130.68-121.82ppm), and (CH₂-CH₂) (4C) at (δ=31.60-29.11ppm). Figure 6 shows ¹³C-NMR spectra for [DAi] compound.

Scheme 1: the paths for preparing Schiff Bases di Azomethine [A][B][C].

Scheme 2: the mechanism of reaction for the preparation of Schiff Bases di Azomethine.
Schemes 3a: the paths for preparing 1,3-Oxazepindione derivatives [D].
Schemes 3b: the paths for preparing 1,3-Oxazepindione derivatives [E]
Scheme 4: the mechanism of reaction for the preparation of 1,3-Oxazepindione derivatives.

Fig. 1: shows FT-IR spectra for [A₂].
Fig. 2: shows 1H-NMR spectra for [A1].

Fig. 3: shows 13C-NMR spectra for [B1].
Fig. 4: shows FT-IR spectra for [DB$_2$].

Fig. 5: shows 1H-NMR spectra for [EC$_2$].
CONCLUSION

All compounds required for this scientific study were successfully prepared. Nuclear magnetic resonance spectroscopy (1HNMR and 13CNMR) and infrared (FT-IR) spectroscopy were used to characterize the prepared compounds. Using thin layer chromatography (TLC), all reactions were monitored.

References

تحضير وتشخيص مشتقات 3-اوكسازبيندايون عن طريق إيمينات ثنائي فورميل البنزين كمادة أولية

هشام عادل1*, نبيل ياسين جمعة1
1-قسم الكيمياء، كلية التربية للعلوم الصرفة، جامعة الانبار، الانبار، العراق.

الخلاصة:

في هذا البحث، حضرت مشتقات 3،1-اوكسازبيندايون عن طريق تفاعل قواعد شف ثنائية الأزوميثين [Ä، B، C] مع أهدريد الماليك وأنهدريد السكسنيك [B، D] عن طريق تفاعل ترفثالديهايد أو ايزوفثالديهايد أو أورثو-ثالديهايد مع 5 قطرات من حمض الخليك الثلجي كعامل مساعد ومشتقات الانيلين الهالوجينية في الأيثانول المطلق كمذيب. تم تشكيل المركبات المحضرة واثباتها باستخدام مطيافية الاشعة تحت الحمراء والرنين النووي المغناطيسي. جميع تفاعلات المركبات المحضرة تم متابعتها عن طريق تقنية كروماتوغرافيا الطبقية الرقيقة.

الكلمات المفتاحية: 3،1-أوكسازبين، قواعد شف، إيمينات، أهدريد، الأنيلين.

معلومات المؤلف:
الايميل: hushamadil93@gmail.com
الموبايل: 07827636793

الموافق: 07/8/2024
تأريخ الاستلام: 11/7/2023
تاريخ التعديل: 27/7/2023
تأريخ القبول: 8/8/2023
تاريخ النشر: 30/6/2024

الكلمات المفتاحية:
1،3-اوكسازبين، قواعد شف، إيمينات، أهدريد، الأنيلين.